[過去ログ] 現代数学の系譜 工学物理雑談 古典ガロア理論も読む71 (1002レス)
上下前次1-新
抽出解除 レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
190(4): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/06/24(月)07:42 ID:VdUBNFVE(4/8) AAS
>>184 補足
> 7)さらに附言すれば、区間[0, 1]→R[-∞,+∞](=時枝記事の通り”任意の実数”(>>20ご参照))に拡大すれば、これは”確率0”以外になりようがないではないか!w(^^
1)ここ、当然測度論による確率計算です。区間[0, 1]なら、全体の測度1で、ただ1点の測度は0
2)普通確率論では、有限区間を考えます。区間[x, x+r]で、全体の測度rです
そして、その区間内のある範囲[x', x'+r']を考えて、確率r'/rなどとします
3)ですが、R[-∞,+∞]とすると、どんな有限範囲[x', x'+r']を考えても、確率はr'/∞=0です
つまり、全体が有限区間[x, x+r]の場合以上に、時枝記事の設定R[-∞,+∞]の数当ては、困難です
省10
192: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/06/24(月)07:48 ID:VdUBNFVE(6/8) AAS
>>190 訂正
・同じことが、時枝の箱で言えます。R[-∞,+∞]で、ある箱に1を入れ、別の箱にも1を入れることができるなら、他の箱を開けても、的中確率は増えません
↓
・同じことが、時枝の箱で言えます。R[-∞,+∞]で、ある箱に1を入れ、別の箱にも1を入れることができるのですから、他の箱を開けても、的中確率は増えません
補足
そもそも、トランプに例えても、箱は可算無限、トランプカードに相当するのがRで非可算なのだから、入れる数の重複を許さないとしても、非可算−可算=非可算で、やっぱり当てられないですよね(^^
199(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/06/24(月)10:15 ID:dnjTnHb1(1/16) AAS
>>197
哀れな素人さん、どうもスレ主です。
(引用開始)
「箱がたくさん,可算無限個ある.箱それぞれに,私が実数を入れる.
どんな実数を入れるかはまったく自由,例えばn番目の箱にe^πを入れてもよいし,すべての箱にπを入れてもよい.
もちろんでたらめだって構わない」
↑これだけ見れば当てることはできないことは明々白々である(笑
省4
201(2): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/06/24(月)10:37 ID:dnjTnHb1(2/16) AAS
>>190 補足
1)時枝不成立の証明は、>>29に示した反例の存在です
関数値の加算無限列で、あるxDの値f(xD)が、他の関数値から決められてはいけないということ
(同様のことは、形式的冪級数の係数aDでも言える)
2)これは、>>183-184で示した、
「確率変数を使ったIID前提で、ある確率変数xDが、他の値から求められてはいけない」
の確率変数を使わないバージョンです。両社は、数学的には、ほぼ等価です
省17
203: 2019/06/24(月)10:43 ID:OYjNrwIX(5/7) AAS
>>199
>要するに、”これに乗せられる人は、大学1〜2年で同値類を学んで、確率過程論はまだというレベルの人”
>こういう人が、ハマリます(>>190)
バカ発言乙
確率過程論の教科書に時枝解法の成否は載ってませんw
よっていくら確率過程論を勉強したところで無駄ですw
時枝解法を否定したいなら時枝解法の誤りを指摘する以外ありませんw
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.032s