[過去ログ]
現代数学の系譜 工学物理雑談 古典ガロア理論も読む71 (1002レス)
現代数学の系譜 工学物理雑談 古典ガロア理論も読む71 http://rio2016.5ch.net/test/read.cgi/math/1561208978/
上
下
前次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索
歴削→次スレ
栞削→次スレ
過去ログメニュー
リロード規制
です。10分ほどで解除するので、
他のブラウザ
へ避難してください。
868: 哀れな素人 [] 2019/07/03(水) 22:36:03.12 ID:WZDLmHit >>859 スレ主よ、お前は何をアホなことを書いているのか(笑 >無限とか無限集合を否定しては >使える数学無くなりますから 使える数学とは何のことか(笑 無限とか無限集合など使わなくても 実際の工業技術には何の差支えもない(笑 また無限とか無限集合を使う数学は全部間違いなのである(笑 ただしこれはもちろん∞という記号を使うな、 というような意味ではないぞ(笑 お前が信仰している現代数学の実数論や 無限集合論は間違いだといっているのである(笑 お前もものすごく頑迷なアホだ(笑 http://rio2016.5ch.net/test/read.cgi/math/1561208978/868
870: 132人目の素数さん [sage] 2019/07/03(水) 22:43:24.90 ID:pxjO58A1 >>868 認証やネットセキュリティだと不存在証明や不可能証明に基づいたプロトコル使うわけだが 不存在証明や不可能証明は無限の可能な選択肢を排除してると看做せる。 こういう厳密な身元証明には白いカラスは居ないのだ。 http://rio2016.5ch.net/test/read.cgi/math/1561208978/870
879: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2019/07/04(木) 07:39:28.13 ID:oKoFX0f8 >>868 哀れな素人さん どうも。スレ主です。 >使える数学とは何のことか(笑 >無限とか無限集合など使わなくても >実際の工業技術には何の差支えもない(笑 現代数学と現代物理から、「無限とか無限集合を使わない」としたら、中身すかすか で、工業技術も中身すかすか。多分、ニュートン以前の時代へ逆戻り 例えば、工業技術では、フーリエ変換 (FT) とか制御工学のラプラス変換を多用します フーリエ変換やラプラス変換で、”∞”を使うなといわれると、困る(^^; まあ、分らないでしょうね 文系の方には https://ja.wikipedia.org/wiki/%E3%83%95%E3%83%BC%E3%83%AA%E3%82%A8%E5%A4%89%E6%8F%9B フーリエ変換 (抜粋) フーリエ変換 (FT) は他の多くの数学的な演算と同様にフーリエ解析の主題を成す。 フーリエ変換を考える動機はフーリエ級数の研究に始まる。フーリエ級数の研究において、複雑な周期函数は単純な波動の数学的な表現である正弦函数や余弦函数の和として表される。 正弦や余弦の性質のおかげで、この和に現れる各波の量、フーリエ係数を積分によって計算することができる。 多くの場合に、e2πiθ = cos?2πθ + i sin?2πθ (オイラーの公式)を用いて、正弦関数および余弦関数の代りに基本波動 e2πiθ を用いた方が便利である。 https://ja.wikipedia.org/wiki/%E3%83%A9%E3%83%97%E3%83%A9%E3%82%B9%E5%A4%89%E6%8F%9B ラプラス変換 (抜粋) ラプラス変換によりある種の微分・積分は積などの代数的な演算に置き換わるため、制御工学などにおいて時間領域の(とくに超越的な)関数を別の領域の(おもに代数的な)関数に変換することにより、計算方法の見通しを良くするための数学的な道具として用いられる。 フーリエ変換を発展させて、より実用本位で作られた計算手法である。 「ヘヴィサイドの演算子」の発表の後に、多くの数学者達により数学的な基盤は1780年の数学者ピエール=シモン・ラプラスの著作にある事が指摘された(この著作においてラプラス変換の公式が頻繁に現れていた)。 http://rio2016.5ch.net/test/read.cgi/math/1561208978/879
メモ帳
(0/65535文字)
上
下
前次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.033s