[過去ログ]
Inter-universal geometry と ABC予想 33 (1002レス)
Inter-universal geometry と ABC予想 33 http://rio2016.5ch.net/test/read.cgi/math/1539459427/
上
下
前次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
必死チェッカー(本家)
(べ)
自ID
レス栞
あぼーん
このスレッドは過去ログ倉庫に格納されています。
次スレ検索
歴削→次スレ
栞削→次スレ
過去ログメニュー
938: 132人目の素数さん [] 2018/10/30(火) 11:52:45.89 ID:BJ96nTzA すでに バレている事件でしょ http://rio2016.5ch.net/test/read.cgi/math/1539459427/938
941: 132人目の素数さん [] 2018/10/30(火) 13:34:44.43 ID:BJ96nTzA ,なるほど Mochizuki does not choose any such isomorphism, but works with what he calls the full poly-isomorphism, i.e. the set of all such isomorphisms. Although we spent a lot of time discussing the necessity of introducing full poly-isomorphisms over choosing one such isomorphism, Mochizuki was not able to explain this convincingly in our opinion. http://rio2016.5ch.net/test/read.cgi/math/1539459427/941
944: 132人目の素数さん [] 2018/10/30(火) 14:26:12.25 ID:BJ96nTzA 迷惑だらけなのに なぜ擁護するのか、さっぱりわからん http://rio2016.5ch.net/test/read.cgi/math/1539459427/944
945: 132人目の素数さん [] 2018/10/30(火) 15:11:41.17 ID:BJ96nTzA There is one consistent choice of isomorphisms given by using the natural isomorphisms R⊙,Θ ∼= R⊙,q ∼= R coming from the observation that the global realified Frobenioids coming from F ×μ- prime strips are always canonically trivial using the various γcan. However, we saw that with these isomorphisms, the abstract Θ-pilot object does not encode the arithmetic degree of the Θ-divisor. http://rio2016.5ch.net/test/read.cgi/math/1539459427/945
946: 132人目の素数さん [] 2018/10/30(火) 15:14:07.95 ID:BJ96nTzA >>945 Thus, Mochizuki wanted to introduce scalars of j2 somewhere on the left part of this diagram (which strictly speaking leads to inconsistencies, i.e. monodromy, on the left part of the diagram alone, which arguably can be overcome by using averages). However, it is clear that this will result in the whole diagram having monodromy j2, i.e., being inconsistent. http://rio2016.5ch.net/test/read.cgi/math/1539459427/946
メモ帳
(0/65535文字)
上
下
前次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
1.888s*