[過去ログ] 現代数学の系譜 工学物理雑談 古典ガロア理論も読む46 (692レス)
前次1-
抽出解除 レス栞

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
169
(3): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2017/11/14(火)22:00 ID:agSxZaXK(14/15) AAS
>>159 追加

ところで、おまえ、下記のThomae's functionの「f is not differentiable at all irrational numbers.」証明を読んでないみたいだから、引用しておくよ(^^

https://en.wikipedia.org/wiki/Thomae%27s_function
Thomae's function
(抜粋)

f(x)= 有理数rが既約分数p/qで表されるとき、1/q 無理数で0 (注:>>83同様)

f is not differentiable at all irrational numbers.
省7
40: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2017/11/12(日)08:54 ID:cTg/FCp5(40/94) AAS
スレ41 2chスレ:math
170 返信:132人目の素数さん[sage] 投稿日:2017/09/07(木) 16:37:17.53 ID:kjL7MoYs [8/14]
>>169
>>時枝記事は有限個の点からなる零集合かつ可測空間からなる確率空間を扱っているから、
>>ゲームに勝つ確率を求めるだけなら、高校数学までの確率を求めるとき
>>と同じように考えればそのゲームに勝つ確率は 99/100 と求まる。

省10
170: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2017/11/14(火)22:14 ID:agSxZaXK(15/15) AAS
>>169 追加

Thomae's function なら、f(bi)=1/i だから、√ 5* i ≠ 0
ハイラー、ヴァンナーの「解析教程」下なら、f(bi)=1/i^2 だから、√ 5 ≠ 0

で、例えば、1/q^3 なら、f(bi)=1/i^3 だから、√ 5/i → 0 (i → ∞)
つまり、1/q^n で、n >=3 なら、下限の√ 5 ≠ 0などが、外れるってこと

なので、”1/q^2だと無理数のところで微分不能”(>>159より)は、大した話じゃ無い
173
(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2017/11/15(水)08:08 ID:dypommzJ(1/9) AAS
>>169 追加

According to Hurwitz's theorem, there also exists a sequence of rational numbers (bi=ki/i)_(i=1〜∞ ), converging to x0,

|ki/i - x0| > |ki+1/i+1 - x0|

が使えるかな?(^^

なお、訂正

https://en.wikipedia.org/wiki/Thomae%27s_function
省5
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 2.065s*