[過去ログ] 現代数学の系譜 工学物理雑談 古典ガロア理論も読む42 [無断転載禁止]©2ch.net (795レス)
上下前次1-新
抽出解除 必死チェッカー(本家) (べ) 自ID レス栞 あぼーん
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
370: 2017/09/19(火)11:10 ID:WW1DZ+9Q(1/4) AAS
R^4内の多様体を本質を失わずに、R^3に描く方法↓
外部リンク:www.amazon.co.jp
371(1): 2017/09/19(火)11:18 ID:WW1DZ+9Q(2/4) AAS
ルベーグ積分の構成に不可欠な「Rの開集合は(互いに連結していない複数の)開区間(の和集合)である」ことを以下に証明する。
【証明】
実軸(数直線)R=R^1に含まれる自由に与えた空でな
い開集合Sに対して, 開集合の定義により, 任意の点x_
0∈Sとx_0を含みSの中に有る開区間〈a_0 , b_0〉が
存在する.〈a_0 , b_0〉に入っていない点x_1∈Sが有
れば(〈a_0 , b_0〉を充分小さくして有るようにもで
省17
372: 2017/09/19(火)11:22 ID:WW1DZ+9Q(3/4) AAS
>>371
任意の回数kに対してO(k)に入っていない内点x_k∈S
が有るならx_kを含む(k+1)個目の開区間〈a_(k+1) ,
b_(k+1)〉を作ることができる. 0回目から(k+1)回目
までに現れた(k+2)個の開区間の和集合 O_(k+1) =
∪_(i=0, … , k+1)〈a_i , b_i〉がSに等しくないなら,
〈a_(k+1) , b_(k+1)〉に入っていない内点x_(k+1)∈
省16
378: 2017/09/19(火)22:00 ID:WW1DZ+9Q(4/4) AAS
プッシー♡
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.147s