[過去ログ] 現代数学の系譜11 ガロア理論を読む30 [無断転載禁止]©2ch.net (653レス)
上下前次1-新
抽出解除 レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
57(3): 現代数学の系譜11 ガロア理論を読む 2017/04/21(金)14:41 ID:fI8jm0e8(5/20) AAS
>>55 つづき
有限アーベル群[編集]
詳細は「有限アーベル群」を参照
整数全体のなす加法群の法 n に関する剰余類の成す巡回群 Z/nZ は有限アーベル群のもっとも単純な例として挙げることができるが、
逆に任意の有限アーベル群は適当な素数冪に対するこの形の有限巡回群の直和に同型であり、そのときそれら直和因子の位数は全体として一意に決定され、与えられた有限アーベル群の不変系 (complete system of invariants) と呼ばれる。
有限アーベル群の自己同型群はその不変系によって直接的に記述することができる。有限アーベル群の理論はフロベニウスとシュティッケルベルガー(英語版)の1879年の論文に始まり、のちに整理され主イデアル整域上の有限生成加群にまで一般化されて、線型代数学の重要な章を成すものとなった(単因子論)。
素数位数の任意の群は巡回群に同型であり、ゆえにアーベル群である。また、位数が素数の平方であるような任意の群はアーベル群となる[5]。
省10
58: 現代数学の系譜11 ガロア理論を読む 2017/04/21(金)14:43 ID:fI8jm0e8(6/20) AAS
>>57つづき
無限アーベル群[編集]
もっとも単純な無限アーベル群は無限巡回群 Z である。任意の有限生成アーベル群 A は Z の適当な r 個のコピーと有限個の素冪位数巡回群の直和に分解可能なアーベル群との直和に同型である。
この場合、分解は一意ではないけれども、上記の定数 r は一意に定まり(A の階数と呼ばれる)、分解に現れる素数冪は全体として有限巡回直和因子すべての位数を一意的に決定する。
これと対照に、一般の無限生成アーベル群の分類は完全とは程遠いものしか知られていないことを理解しなければならない。可除群(任意の自然数 n と a ∈ A に対し方程式 nx = a が常に解 x ∈ A を持つような群 A)は完全な特徴づけが知られている無限アーベル群の重要なクラスの一つである。
任意の可除群は、有理数の加法群 Q といくつか適当な素数 p に対するプリューファー群 Qp/Zp を直和因子に持つ直和に同型で、それぞれの種類の直和因子の数は濃度の意味で一意に決定される[注釈 3]。
さらに言えば、可除群 A が何らかのアーベル群 G の部分群となるとき、A は G における直和補因子を持つ(すなわち、G の適当な部分群 C で G = A ? C なるものがとれる)。
省8
59: 現代数学の系譜11 ガロア理論を読む 2017/04/21(金)14:48 ID:fI8jm0e8(7/20) AAS
>>57 補足
>有限アーベル群の自己同型群はその不変系によって直接的に記述することができる。有限アーベル群の理論はフロベニウスとシュティッケルベルガー(英語版)の1879年の論文に始まり、のちに整理され主イデアル整域上の有限生成加群にまで一般化されて、線型代数学の重要な章を成すものとなった(単因子論)。
>素数位数の任意の群は巡回群に同型であり、ゆえにアーベル群である。また、位数が素数の平方であるような任意の群はアーベル群となる[5]。
>実は任意の素数 p に対して位数 p2 の群は、同型を除いて Z/p2Z と Z/pZ × Z/pZ のちょうど二種類しかない。
ほら、”実は任意の素数 p に対して位数 p2 の群は、同型を除いて Z/p2Z と Z/pZ × Z/pZ のちょうど二種類しかない”が
>>18の”位数がp^2のアーベル群は、C_p×C_p かC_p^2 かのどちらか” に相当しているんだよ(^^;
134(1): 現代数学の系譜11 ガロア理論を読む 2017/04/23(日)18:31 ID:cvHfhso/(33/35) AAS
>>120
>足立恒雄 ガロア理論講義 3.3 アーベル群の基本定理
>>57の「有限アーベル群の基本定理」か。もうひとつすっきり理解できていないな〜、おれ(^^
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.236s*