[過去ログ] 現代数学の系譜11 ガロア理論を読む30 [無断転載禁止]©2ch.net (653レス)
前次1-
抽出解除 レス栞

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
55
(2): 現代数学の系譜11 ガロア理論を読む 2017/04/21(金)14:37 ID:fI8jm0e8(3/20) AAS
>>54
で、検証つづき

外部リンク:ja.wikipedia.org
アーベル群
(抜粋)

数学、とくに抽象代数学におけるアーベル群(アーベルぐん、英: abelian group[注釈 1])または可換群(かかんぐん、英: commutative group)は、群演算が可換な群、すなわちどの二つの元の積も掛ける順番に依らず定まる群を言う。名称は、ノルウェーの数学者ニールス・アーベルに因む[2][注釈 2]。
アーベル群は環や体、環上の加群やベクトル空間といった抽象代数学の概念において、その基礎となる加法に関する群(加法群)としてしばしば生じる。
省15
56: 現代数学の系譜11 ガロア理論を読む 2017/04/21(金)14:39 ID:fI8jm0e8(4/20) AAS
>>55 関連
>とくに有限アーベル群の構造は具さに知られているが

外部リンク:dictionary.goo.ne.jp
つぶさ‐に【▽具に/▽備に/×悉に】 の意味 goo辞書
出典:デジタル大辞泉
[副]
1 細かくて、詳しいさま。詳細に。「事の次第を―報告する」
省11
57
(3): 現代数学の系譜11 ガロア理論を読む 2017/04/21(金)14:41 ID:fI8jm0e8(5/20) AAS
>>55 つづき
有限アーベル群[編集]
詳細は「有限アーベル群」を参照
整数全体のなす加法群の法 n に関する剰余類の成す巡回群 Z/nZ は有限アーベル群のもっとも単純な例として挙げることができるが、
逆に任意の有限アーベル群は適当な素数冪に対するこの形の有限巡回群の直和に同型であり、そのときそれら直和因子の位数は全体として一意に決定され、与えられた有限アーベル群の不変系 (complete system of invariants) と呼ばれる。
有限アーベル群の自己同型群はその不変系によって直接的に記述することができる。有限アーベル群の理論はフロベニウスとシュティッケルベルガー(英語版)の1879年の論文に始まり、のちに整理され主イデアル整域上の有限生成加群にまで一般化されて、線型代数学の重要な章を成すものとなった(単因子論)。
素数位数の任意の群は巡回群に同型であり、ゆえにアーベル群である。また、位数が素数の平方であるような任意の群はアーベル群となる[5]。
省10
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.030s