[過去ログ]
現代数学の系譜11 ガロア理論を読む30 [無断転載禁止]©2ch.net (653レス)
現代数学の系譜11 ガロア理論を読む30 [無断転載禁止]©2ch.net http://rio2016.5ch.net/test/read.cgi/math/1492606081/
上
下
前次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索
歴削→次スレ
栞削→次スレ
過去ログメニュー
49: 現代数学の系譜11 ガロア理論を読む [sage] 2017/04/20(木) 22:54:53.97 ID:9sYSsKwf >>48 関連 https://ja.wikipedia.org/wiki/%E6%9C%89%E9%99%90%E3%82%A2%E3%83%BC%E3%83%99%E3%83%AB%E7%BE%A4 数学の殊に代数学において有限アーベル群(ゆうげんアーベルぐん、英: finite abelian group)は、可換かつ有限なる群を言う。ゆえにこれは有限型のアーベル群の特別の場合である。 にも拘らず、有限アーベル群の概念には独自の長い歴史と特有の様々な応用(合同算術のような純粋数学的なものも、誤り訂正符号のような工学的なものも含めて)を有する。 クロネッカーの定理(フランス語版) は有限アーベル群の構造を陽に記述する。すなわち、有限アーベル群は巡回群の直積である。 群の圏において、有限アーベル群の全体は自己双対部分圏を成す。 目次 [非表示] 1 歴史 2 性質 2.1 基本性質 2.2 クロネッカーの定理 2.3 クロネッカーの定理の系 3 応用 3.1 調和解析 3.2 合同算術 3.3 ガロワ理論 3.4 有限体 3.5 情報理論 4 注 4.1 注釈 4.2 出典 5 関連項目 6 外部リンク 7 関連文献 つづく http://rio2016.5ch.net/test/read.cgi/math/1492606081/49
50: 現代数学の系譜11 ガロア理論を読む [sage] 2017/04/20(木) 22:56:13.32 ID:9sYSsKwf >>49 つづき 歴史[編集] 1824年にノルウェーの数学者ニールス・アーベルは、自費でわずか6頁の五次の一般方程式の解法に関する研究を著した[1]。これはある置換の集合の可換性が重要なることを明らかにするものであった。こんにち可換群にアーベルの名を関するのはこの発見に依拠するのである。 エヴァリスト・ガロワも同じ問題に取り組み、1831年に初めて「形式群」(groupe formel) の語を用いた[2]。この論文は後にジョゼフ・リウヴィルによって出版されている。19世紀後半、有限群の研究が本質的に表れて初めてガロワ理論が構築されていくことになる。 形式群の概念の形成には多くの年月が必要とされたにもかかわらず、クロネッカーはその公理化における一人の役者である。1870年にはこんにち用いられるのと同値な有限アーベル群の定義が与えられている[3]。一般の定義はハインリッヒ・ヴェーバー(英語版)による[4]。 1853年にレオポルト・クロネッカーは有理数体の有限拡大で可換なガロワ群を持つものは円分拡大の部分体であることを述べた[5]。 こんにちクロネッカー?ヴェーバーの定理と呼ばれるこの定理の、クロネッカーによる証明は誤っており、リヒャルト・デデキント、ハインリッヒ・ヴェーバー[6]を経て最終的にダフィット・ヒルベルト[7]が厳密な証明を与えた。 この流れにおいてクロネッカーは、1870年の論文において(こんにちではクロネッカーの名を関する)有限アーベル群の構造定理を証明した一人に数えられる。 つづく http://rio2016.5ch.net/test/read.cgi/math/1492606081/50
メモ帳
(0/65535文字)
上
下
前次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.027s