[過去ログ]
現代数学の系譜11 ガロア理論を読む30 [無断転載禁止]©2ch.net (653レス)
現代数学の系譜11 ガロア理論を読む30 [無断転載禁止]©2ch.net http://rio2016.5ch.net/test/read.cgi/math/1492606081/
上
下
前次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索
歴削→次スレ
栞削→次スレ
過去ログメニュー
277: 現代数学の系譜11 ガロア理論を読む [sage] 2017/04/27(木) 15:51:17.99 ID:rio6lBme >>246 補足 >ホワイトノイズは無限次元空間上の超関数論 >によって数学的に定式化されるが,そのための自然な枠組みの一つはホワイトノイズ解析ま >たは飛田解析[107,121]であり,尾畑[138]によってホワイトノイズ関数上の作用素論として >も確立した 関連 http://www.shinshu-u.ac.jp/faculty/science/quest/research/post-2.php 無限次元現象の解明を目指して 信州大学 理学部 乙部 厳己 (抜粋) 現在の研究テーマ:無限次元空間上の発散定理 現在までの歴史上、数学のみならず諸科学まで含めて最も大きな影響を及ぼした定理は何かといえば、おそらく間違いなく微積分の基本定理だといえると思います。微積分の基本定理とは(1 次元のときに)微分と積分がお互いに逆の演算であることを主張するものです。 これは領域の内部全体での関数の値の和が、その原始関数の境界での値の差に等しいことを主張し、関数の形を適切に与えることで領域の内部における情報を外周部だけで理解できることを示しています。 この事実は多次元でも一般に成り立っていることを示したのがガウスによる発散定理です。このような関係は解析学の最も基礎をなすものであり、たとえば関数概念そのものを拡張するにはいくつかの方法が知られています(総称して超関数と呼びます)が、いずれにせよ根底にはこの事実があるといってよいと思います。 もちろんそれだけではなく、ベクトル解析など多くの応用の基礎となると同時に現代幾何学の基礎の一つといってもよいと思います。例えるならば、うまく関数を設置してから家の周りを一周すれば、知りたかった家の中の状況がわかるということを述べているわけです。 ところが、無限次元空間においては状況が全く異なります。 しかし1970 年代の末頃から、確率論のある種の研究の中でこれら両者はついに融合点を見いだし、測度論に基づいた無限次元空間上の完全な微積分の理論が完成します。この理論は通常、この方向への最初の突破口を開いた数学者の名前をとってマリアヴァン解析と呼ばれています。 ところが、・・・球に相当するような滑らかな領域ではすでに発散定理は定式化できていましたが、長方形のような形 に相当する角のある領域についても発散定理をマリアヴァン解析の枠組みで完全に定式化することを目指しています。 http://rio2016.5ch.net/test/read.cgi/math/1492606081/277
278: 現代数学の系譜11 ガロア理論を読む [sage] 2017/04/27(木) 16:24:02.59 ID:rio6lBme >>277 関連 https://www.jstage.jst.go.jp/browse/sugaku/42/2/_contents/-char/ja/ 数学 . 42 https://www.jstage.jst.go.jp/article/sugaku1947/42/2/42_2_97/_pdf 渡辺信三 確率解析とその応用 1990 (抜粋) 1.Wiener空間と確率解析 確率解析の中心はなんといつても伊藤清先生による確率微分方程式の理論であろう. N. Wienerは1923年にBrown運動を数学的にモデル化してWiener空間を確立したが,伊藤の理論はこのWienerの理論を出発点として展開され,それは確率過程の見本関数に関する微積分学ということができる. 微分学ではまず関数を局所的に直線で近似し接線を考えるが,ランダムな関数では平均値のまわりのゆらぎは無限小ではGauss確率変数であり,したがってその接線的役割を果たすのがWiener過程である. 2.Malliavin解析 上でも見たように無限次元空間の積分論は確率過程論と結びついて発展してきた.ところで無限次元空間での微分学は古典的には, Euler, Lagrange, Hamilton-Jacobi等の変分学であった. 変分学で取りあつかう汎関数は通常滑らかな関数の上で定義されており,Wiener汎関数に関連していえば,その骨格となるべきH上の関数が変分学の対象となる.そしてこのH上の関数の変分学とWiener汎関数積分とはパラメーター・に関する極限状態においてつながってくる.これは大きな偏差(1arge deviation)の理論における基本原理である. 約10年程前P. Malliavin は微分(=変分)の意味をWiener測度に関連させて修正した意味で考えれば,この種のWiener汎関数は十分微分可能であり,多くの場合C..級であるという事実を見出した.それは確率微分方程式の研究に新しい方法を提供するもので,それによってWiener汎関数積分の種々の問題における応用の可能性は飛躍的に増大した. Malliavinはこの微分の概念をWiener空間上のOrnstein-Uhlenbeck過程に関する確率解析を用いて定義したが,その後重川,楠岡一Stroock,杉田,等の研究で丁度有限次元の場合のSobolevの意味の弱微分(weak derivative),あるいはSchwartzの超関数微分に対応する概念と同等であることがわかつてきた. またMalliavin解析の基礎はWiener空間上の部分積分にあるが,一方Schwartzによる超関数の概念は部分積分による関数概念の拡張であった。このようにMalliavinの解析をWiener空間上の超関数論とみるのは自然であり,以下ではこの立場より理論の構成を試みる. http://rio2016.5ch.net/test/read.cgi/math/1492606081/278
メモ帳
(0/65535文字)
上
下
前次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.020s