[過去ログ] 現代数学の系譜11 ガロア理論を読む18 [無断転載禁止]©2ch.net (718レス)
上下前次1-新
抽出解除 レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
559(11): 現代数学の系譜11 ガロア理論を読む 2016/04/28(木)23:48 ID:ZK4UzmS6(2/2) AAS
ところで、時枝はいう。>>176に記したように
「いったい無限を扱うには,
(1)無限を直接扱う,
(2)有限の極限として間接に扱う,
二つの方針が可能である.
確率変数の無限族は,任意の有限部分族が独立のとき,独立,と定義されるから,(2)の扱いだ.
(独立とは限らない状況におけるコルモゴロフの拡張定理なども有限性を介する.)」
省16
560(9): 現代数学の系譜11 ガロア理論を読む 2016/04/29(金)00:09 ID:9+oibUNZ(1) AAS
>>559 つづき
”問題A5:箱がN個、N=mxn”で、m=100が、時枝(ルーマニア)解法でnが有限の場合だ
そこで、”問題A3:箱が四個”を考えてみよう。m=2,n=2とできる。2列で、列の長さ2。列の長さ2の数列を類別し、代表元を決めておく。
どちらかの列を開けて数列を見る。類別が決まり、代表元が分かる。で、決定番号は確率としては、2だ。なぜなら、箱に入る可能性があるのは非加算無限の実数だから、代表元と数列が一致する可能性は、確率としてはゼロだ
決定番号のうちの最大値D=2。>>4にあるように、「いよいよ第k列 の(D+1) 番目から先の箱だけを開ける」と言っても、(D+1) 番目は無い
”問題A4:箱が六個”を考えてみよう。m=2,n=3とできる。2列で、列の長さ3。列の長さ3の数列を類別し、代表元を決めておく。
上記と同様に、決定番号は確率としては、3だ。なぜなら、2番目の箱に入る可能性があるのは非加算無限の実数だから、代表元と2番目の箱数が一致する可能性は、確率としてはゼロだ
省4
562(6): 2016/04/29(金)20:13 ID:p7s/3faH(1) AAS
>>559-560
極限の取りかたは他にもあって
任意の実数をXiと書くことにして
Xiが1個, 0が 99個 : X1, 0, 0, 0, 0, ... , 0
Xiが2個, 0が198個 : X1, X2, 0, 0, 0, ... , 0
Xiがn個, 0が99n個 : X1, X2, ..., Xn, 0, 0, 0, ... , 0
あるいは
省6
596(1): 現代数学の系譜11 ガロア理論を読む 2016/05/04(水)20:53 ID:vN4s28Oq(11/18) AAS
>>594 補足
>>556より
”可算無限個の閉じた箱がある。各々の箱には実数が入っている。
問題A:
・すべての箱が閉じている初期状態において、開けない箱を任意に1つ選ぶ(箱Xとする)。
・箱Xを定めたあと、X以外の箱については中を開けて見てよい。
箱Xの中身を当てる戦略があるか?
省17
598: 現代数学の系譜11 ガロア理論を読む 2016/05/04(水)21:28 ID:vN4s28Oq(13/18) AAS
>>597 補足
問題B:
・可算無限個の閉じた箱があり、中を開けて見てよい。ただし1個は開けずに残しておく。
(注意:上記の1個を事前に(他の箱を開ける前に)定めておく必要はない。)
開けずに残した箱の中身を当てられるか。
例えば、有限の場合、トランプが伏せられているとする
四種1〜13まで、52枚
省5
607(4): 現代数学の系譜11 ガロア理論を読む 2016/05/04(水)22:58 ID:vN4s28Oq(16/18) AAS
>>600 ”well defined”続き
同値関係、商集合
”well defined”であるために
1)1 つの同値類は、それに含まれている元のうちどれをとっても、それを代表元とする同値類はもとと同じ集合になる(代表元の取替えによって不変である
2)ある元が、異なる二つの同値類に属すことがあってはならない
2)については、当たり前すぎて明記されていないが、すぐ分かるだろう
そこで、>>559に戻ると、箱の数n(=箱の数の長さ)で、n=3を考えると(>>560の列の長さ3に同じ)、
省9
614: 現代数学の系譜11 ガロア理論を読む 2016/05/05(木)00:53 ID:tEqEfy29(2/18) AAS
>>559-560 補足
>>176数学セミナー201511月号P37 時枝記事引用の前に、次の一文がある
「R^N/〜 の代表系を選んだ箇所で選択公理を使っている.
その結果R^N →R^N/〜 の切断は非可測になる.
ここは有名なヴィタリのルベーグ非可測集合の例(Q/Zを「差が有理数」で類別した代表系, 1905年)にそっくりである.」
ルベーグと聞いて思い出したところで、ルベーグ測度論に、零集合がある
外部リンク:ja.wikipedia.org
省11
622(2): 現代数学の系譜11 ガロア理論を読む 2016/05/05(木)08:48 ID:tEqEfy29(3/18) AAS
>>619
どうも。スレ主です。
なんだ、そこで騙されていたのか?
>>134は、”期待値”としての決定番号Dを言っている。
なぜなら、時枝記事は、ルーマニア解法として、可算無限長の数列のしっぽによる同値類分類による解法を提示した。
これは、特定の場合に成り立つ解法としてでなく、一般解法としての提示だ。
だから、>>559-560に、数列の長さnの有限モデルから、n→∞として、”期待値”としての決定番号Dが、D→∞を示した。
省4
623(3): 現代数学の系譜11 ガロア理論を読む 2016/05/05(木)08:48 ID:tEqEfy29(4/18) AAS
>>622
ところで、>>559-560に示したモデルに対して、あなたは、別のモデルも可能だと>>562を書いた
>>562に対しては、>>569で ID:oT//FcJnさんから、「貴方は貴方で支離滅裂。」と批判されていたね
>>562は、いまでも有効なのか? それとも取り下げたのか?
そして、>>562に書いた「スレ主は最初から数当てが不可能な数列のみを考えている」という>>559-560に対する批判はそれだけか?
「スレ主は最初から数当てが不可能な数列のみを考えている」というのは、随分と文学的だ
数学的批判は、無いのか?
省1
624(1): 現代数学の系譜11 ガロア理論を読む 2016/05/05(木)08:49 ID:tEqEfy29(5/18) AAS
>>623 補足
>>559で書いたように、時枝のいうルーマニア解法に対する批判は、可算無限長の数列のしっぽによる同値類分類は、「"(1)無限を直接扱う,"というトリックをやっている」と
つまり、あなたが>>615で書いた、時枝は「同値関係(推移律)は記事のp.36でハッキリと証明済」という件は、"(1)無限を直接扱う,"というトリックの上でだ
>>559-560に示したモデルでも、長さ有限の場合に、同値関係(推移律)はきちんと成り立っている。そして、n→∞の極限を考えている
そのモデルの上で、ルーマニア解法が一般解法(特定の場合に限定されない)としてどうかと。期待値としてD→∞を示した。
批判のキモは、「"(1)無限を直接扱う,"というトリックをやっている」のはルーマニア解法だと
そして繰り返す。>>559-560に示したモデルに対して数学的批判(数学的に不成立とか)はないのか? >>562は取り下げたのか?
省2
629(1): 現代数学の系譜11 ガロア理論を読む 2016/05/05(木)10:53 ID:tEqEfy29(9/18) AAS
>>623で、「数学のモデルとして、>>559-560に示したモデルと>>562のあなたのとは、並立可能なのか?」と問うた
「数学基礎論」の示すところ、無限を扱うとき、公理系の選び方で、「特定の公理系では証明も反証もできない問題が数多く見いだされた」という(例えば下記)
だから、並立可能なのかも知れない。が、反論はあなたの番だよ。
>>559-560に示したモデルを(数学的に)否定するか、>>562を守るか、別の有限モデルからの極限として時枝解法を示すか
数学的には、3択問題と思うがどうよ
外部リンク:ja.wikipedia.org
数学基礎論
省7
633(1): 現代数学の系譜11 ガロア理論を読む 2016/05/05(木)11:55 ID:tEqEfy29(10/18) AAS
さて、計算複雑性の切り口で、時枝問題を見てみよう
「理論上計算可能な問題であっても、実際に解くことができない問題を intractable(手に負えない、処理しにくい) であるという。」というそうだ(下記)
「加算無限個の箱に入る実数の数列、それをすべてしっぽで同値類に分類し、代表元を決めておく」と、ルーマニア解法はいう
この同値類の集合は、非加算無限ある(∵箱が1つとしても、その箱に入るのは任意の実数だから、非加算無限ある)
となれば、「加算無限個の箱に入る実数の数列、それをすべてしっぽで同値類に分類し、代表元を決めておく」という前処理自身が、intractableでは?
前処理自身が、intractableであるとすれば、ルーマニア解法は現実的解法としては、使えない
ただし、「理論上計算可能な問題」か否かは残る。
省11
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル アボンOFF
ぬこの手 ぬこTOP 0.041s