[過去ログ] 現代数学の系譜11 ガロア理論を読む18 [無断転載禁止]©2ch.net (718レス)
上下前次1-新
抽出解除 レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
270(3): なんや知らんが萌える哀れな素人 2016/02/28(日)12:55 ID:7dRe37sk(8/13) AAS
>>267
何度でも言うが、補題4はどんな一般方程式でも成り立つわけではないのである。
事実上、与えられた方程式が有理数を根とする方程式なら成り立たない。
なぜなら有理数の根で作るVの式の値は有理数になってしまい、
その場合はVを根とする既約方程式はV−q=0だけで、
V´などは存在せず、他の根を表わすf(V´)に代入すべき V´が
ないのだから、補題4が成立しようがない。
省4
272(1): 2016/02/28(日)16:00 ID:bdumbZIT(1/2) AAS
>>270
もしスレ主と同一人物なら、本気でいっているかも知れないから、釣られてみましょう。
>もともと補題4はVを根とする方程式がが既約の場合しか成立しない
補題Wが成り立つか否かについて、必ずしも与えられた方程式の一部を
なす多項式f(ここにf(X)=0)が既約である必要はない。可約か既約は、
その多項式f(X)が、或る条件の範囲内で因数分解出来るかどうかの違いに過ぎない。
方程式が重根を持つかどうかの違いに過ぎない。多項式f(X)が可約であれば、
省8
273(1): 2016/02/28(日)16:08 ID:TRx0RPe2(5/9) AAS
>>270
> その場合はVを根とする既約方程式はV−q=0だけで、
> V´などは存在せず、他の根を表わすf(V´)に代入すべき V´が
> ないのだから、補題4が成立しようがない。
もしかしてお前は『A⇒B』という命題PにおいてAが偽だったとき、
Bの真偽によらずPが真となることを知らないのか?
> >>170
省17
274: 2016/02/28(日)16:10 ID:bdumbZIT(2/2) AAS
>>270
>>272の
>原理的には既約多項式にして可約な方程式へと変形することが出来る。
の部分の「可約な方程式」は「既約な方程式」に訂正。
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.029s