[過去ログ] 現代数学の系譜11 ガロア理論を読む18 [無断転載禁止]©2ch.net (718レス)
上下前次1-新
抽出解除 必死チェッカー(本家) (べ) 自ID レス栞 あぼーん
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
39(2): 2016/01/16(土)17:01 ID:AaUSB/SH(1/6) AAS
>>3-4
記事の内容を埋めたりして書くけど、スレ主が書いた文章は以下のような解釈でよい?
>4の途中から分かりにくかったけど、間違っていたら悪いな。
>2.続けて時枝はいう
>
> 私たちのやろうとすることはQのコーシー列の集合を同値関係で類別してRを構成するやりかたに
>似ている. 「いわゆる,カントールの実数の構成の手法に似たことである. 記事の都合上詳細は
省18
41(5): 2016/01/16(土)17:04 ID:AaUSB/SH(2/6) AAS
>>3-4
(>>39の続き)
>「さて本題に戻るが」, 但し「ここでは」もっときびしい同値関係を使う. 実数列の集合 R^Nを考える.
>s=(s_1, s_2, s_3, …),s'=(s'_1, s'_2, s'_3,…)∈R^Nは,ある番号nから
>先のしっぽ「いわゆる第n項」が一致する. 「換言すれば」∃n_0:n≧n_0 → s_n=s'_n のとき,
>同値「関係〜を」s〜s' と定義しよう(いわばコーシーのべったり版).
>「ここに, 任意の, 或る実数rに収束する有理コーシー列 {r_n},{s_n}∈X(r)⊂X について,
省10
42(2): 2016/01/16(土)17:05 ID:AaUSB/SH(3/6) AAS
>>3-4
(>>41の続き)
>そこで, {x_n} を商集合 X(r) の代表元とする. すると, rに対して, rに収束する実数列を考えることで,
>f({r_n})={x_n} なるような実数列 {r_n}∈R^N の全体を考えることが出来る.
>そこで, {x_n} に対して f({r_n})={x_n} なる実数列 {r_n}∈R^N の全体を f^{-1}({x_n}) とする.
>このようにして f^{-1}({x_n}) を構成することは, 任意の実数列 {x_n}∈R^N/〜 に対して出来る.
>そのようなことに注意して, R^N に選択公理を適用し, R^N のすべての元が一直線状に並んでいると見なす.
省12
44(2): 2016/01/16(土)17:07 ID:AaUSB/SH(4/6) AAS
>>3-4
(>>42の続き)
3.つづき
>問題に戻り, 閉じた「各列について可算無限個の箱が並ぶように, 可算無限個の」箱を100列に並べる.
>箱の中身は「当然」私たちに知らされていないが, とにかく第1列の「可算無限個の」箱たち,
>第2列の「可算無限個の」箱たち「, …,」 第100列の「可算無限個の」箱たちは
>100本の実数列 S^1, S^2, …, S^{100} を成す(肩に乗せたのは指数ではなく添字).
省14
45(3): 2016/01/16(土)17:09 ID:AaUSB/SH(5/6) AAS
>>3-4
(>>44の続き)
>「そのような理由から, 実数列S^kを S^1, S^2, …, S^{100} の中から任意に1つ選んだとき,
>S^kの決定番号dが他の列の決定番号「の」どれよりも大きい「換言すれば小さくない」確率は1/100に過ぎない.」
>「話を元に戻す.」 第1列〜第(k-1)列,第(k+1)列〜第100列の「それぞれについて,」
>「各列を構成する可算無限個の」箱を「選択公理をそれぞれの列に適用し」全部開ける.
>第k列の「可算無限個の」箱たちはまだ閉じたままにしておく.
省12
46: 2016/01/16(土)17:24 ID:AaUSB/SH(6/6) AAS
>>3-4
一応、>>39、>>41-42、>>44-45は、記事の内容を「」や()で
或る程度補足したので、スレ主でも分かるようになっている筈だ。
「」や()は、補ったところ。本当は、こういうときこそ、スレ主の
いつもながらのグーグルグーグルって検索しまくる手法が活躍するときなんだよ。
例えば、何らかのサイトがある筈だから、カントールの実数論とか数セミに
出てくるであろう言葉をググってみ。
省1
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.028s