[過去ログ] 現代数学の系譜11 ガロア理論を読む14 [転載禁止]©2ch.net (562レス)
上下前次1-新
抽出解除 レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
308(1): 現代数学の系譜11 ガロア理論を読む 2015/07/25(土)06:30 ID:tAJoLOyr(5/25) AAS
>>307 つづき
上記 3 番目の性質は局所環の非可逆元全体が真のイデアルをなし、したがってジャコブソン根基に含まれることを言っている。
4 番目の性質は次のように言い換えることができる: R が局所環となる必要十分条件は、R に互いに素な二つの真の左イデアルが存在しないことである。
ここで R の二つのイデアル I1, I2 が「互いに素」とは R = I1 + I2 が成立することである。
可換環の場合には、イデアルの左右・両側の区別をしないので、可換環が局所環である必要十分条件はその環が極大イデアルを唯一つ持つことである。
文脈によっては、局所環の定義に(左および右)ネーター性を仮定するものもある。その場合には、ネーター性を持たないものを擬局所環、準局所環 (quasi-local ring) と呼ぶ(本項ではこれを区別しない)。
例
省9
309(2): 現代数学の系譜11 ガロア理論を読む 2015/07/25(土)06:38 ID:tAJoLOyr(6/25) AAS
>>308 つづき
これと同じようなことは、位相空間とその上の一点と実数値連続函数から芽の環を考えることでもできるし、可微分多様体上に一点をとって、可微分写像芽の環を考えても、あるいは点つきの代数多様体上の有理函数芽の環でもよいが、
結果として、これらの芽の環は局所環となる。
またこれらの例は、代数多様体の一般化であるスキームが、どうしてのか特殊な局所環付き空間として定義されるのかということの説明の一助となる。
もう少し算術的な例として、分母が奇数となるような有理数全体の成す環は局所環である。その極大イデアルは、分子が偶数で分母が奇数であるような分数全体である。
もっと一般に、可換環 R とその素イデアル P が与えられたとき、R の P における局所化は、P の生成する唯一の極大イデアルを持つ局所環である。
体上の(一変数あるいは多変数の)形式冪級数環も局所環の例である。極大イデアルは定数項を持たない冪級数全体である。
省7
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.021s