[過去ログ]
現代数学の系譜11 ガロア理論を読む14 [転載禁止]©2ch.net (562レス)
現代数学の系譜11 ガロア理論を読む14 [転載禁止]©2ch.net http://wc2014.5ch.net/test/read.cgi/math/1434753250/
上
下
前次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索
歴削→次スレ
栞削→次スレ
過去ログメニュー
308: 現代数学の系譜11 ガロア理論を読む [] 2015/07/25(土) 06:30:55.21 ID:tAJoLOyr >>307 つづき 上記 3 番目の性質は局所環の非可逆元全体が真のイデアルをなし、したがってジャコブソン根基に含まれることを言っている。 4 番目の性質は次のように言い換えることができる: R が局所環となる必要十分条件は、R に互いに素な二つの真の左イデアルが存在しないことである。 ここで R の二つのイデアル I1, I2 が「互いに素」とは R = I1 + I2 が成立することである。 可換環の場合には、イデアルの左右・両側の区別をしないので、可換環が局所環である必要十分条件はその環が極大イデアルを唯一つ持つことである。 文脈によっては、局所環の定義に(左および右)ネーター性を仮定するものもある。その場合には、ネーター性を持たないものを擬局所環、準局所環 (quasi-local ring) と呼ぶ(本項ではこれを区別しない)。 例 可換な例 可換(および非可換な)体は {0} を唯一の極大イデアルとする局所環である。 局所環に「局所」の名を冠する理由は次のようなものである。 まず、実数直線上で 0 を含むある開区間において定義される実数値連続函数を考え、函数の 0 付近という局所での挙動のみに注目して、0 を含むある開区間(これはいくらでも小さく取って構わない)で一致するような函数を全て同一視する。 この同一視というのは同値関係を成し、この同値類を 0 における実数値連続函数の芽(め、germ)または実数値連続函数芽(が)という。実数値連続函数の芽は通常の函数の値ごとの加法と乗法によって可換環をなす。 この連続函数芽全体の成す環が局所環であることを知るためには、函数芽の可逆性を定義する必要がある。函数芽 f が可逆であるとは f(0) が 0 でないこととする。 これはつまり、f(0) が 0 でなければ、連続函数の性質から、0 を含む適当な開区間上で f が 0 にならず、したがってその区間上で g(x) = 1/f(x) という連続函数の芽を考えることができるという理由による。このとき fg は 1 に等しい。 この特徴づけで明らかなことは、非可逆な函数芽の和がやはり非可逆となるということであり、これによって函数芽の環が可換局所環であることを知ることができる。特にこの局所環の極大イデアルは f(0) = 0 を満たすような函数芽全体に一致する。 つづく http://wc2014.5ch.net/test/read.cgi/math/1434753250/308
309: 現代数学の系譜11 ガロア理論を読む [] 2015/07/25(土) 06:38:55.61 ID:tAJoLOyr >>308 つづき これと同じようなことは、位相空間とその上の一点と実数値連続函数から芽の環を考えることでもできるし、可微分多様体上に一点をとって、可微分写像芽の環を考えても、あるいは点つきの代数多様体上の有理函数芽の環でもよいが、 結果として、これらの芽の環は局所環となる。 またこれらの例は、代数多様体の一般化であるスキームが、どうしてのか特殊な局所環付き空間として定義されるのかということの説明の一助となる。 もう少し算術的な例として、分母が奇数となるような有理数全体の成す環は局所環である。その極大イデアルは、分子が偶数で分母が奇数であるような分数全体である。 もっと一般に、可換環 R とその素イデアル P が与えられたとき、R の P における局所化は、P の生成する唯一の極大イデアルを持つ局所環である。 体上の(一変数あるいは多変数の)形式冪級数環も局所環の例である。極大イデアルは定数項を持たない冪級数全体である。 体上の二元数の成す多元環も局所環である。もう少し一般に、F が体で n が正整数であるならば、商環 F[X]/(Xn) は、定数項を持たない多項式の類全体の成す極大イデアルを持つ局所環となる。 実際に等比級数を使えば、定数項を持つ任意の多項式が Xn を法として可逆であることが示せる。 これらの例では、その元はどれも冪零であるか可逆であるかのいずれかである。 局所環は賦値論では重要な役割を果たす。体 K(これは函数体かもしれないしそうでないかもしれない)が与えられたとき、そこから局所環を見つけることができる。 定義により、K の部分環 R が K の付値環であるならば、K のどの非零元についても、x か x?1 のうちのいずれかが R に属す、という性質を持つ。そのような性質を持つ部分環はどれも局所環である。 K が実際に代数多様体 V 上の函数体であるならば、V の各点 P に対して、「P において定義された」函数の成す賦値環を考えることができるだろう。 V の次元が 2 以上である場合なら、以下のような状況を見て取るのは困難である: つづく http://wc2014.5ch.net/test/read.cgi/math/1434753250/309
メモ帳
(0/65535文字)
上
下
前次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.023s