[過去ログ]
現代数学の系譜11 ガロア理論を読む14 [転載禁止]©2ch.net (562レス)
現代数学の系譜11 ガロア理論を読む14 [転載禁止]©2ch.net http://wc2014.5ch.net/test/read.cgi/math/1434753250/
上
下
前次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索
歴削→次スレ
栞削→次スレ
過去ログメニュー
129: 現代数学の系譜11 ガロア理論を読む [] 2015/07/11(土) 21:00:26.67 ID:FKo26YYw >>128 つづき https://ja.wikipedia.org/wiki/%E6%96%AD%E9%9D%A2_%28%E4%BD%8D%E7%9B%B8%E5%B9%BE%E4%BD%95%E5%AD%A6%29 局所切断と切断の層 ファイバー束はその底空間全域で定義される切断(大域切断、global section)を一般には持たないが、それゆえ局所的にのみ定義される切断というものを考えることも重要である。 ファイバー束 (E, π, B) の(連続な)局所切断 (local section) とは、U を底空間 B の開集合とするときの連続写像 s: U → E であって、束射影 π について U のすべての元 x に対して π(s(x)) = x をみたすようなものを言う。 (U, φ) が E の局所自明化(つまり F をファイバーとして φ が π?1(U) から U × F への同相写像を与えるもの)とするとき、U 上の局所切断は常に存在して、それは U から F への連続写像と一対一に対応する。 このような局所切断の(U を任意に動かすときの)全体は底空間 B 上の層を成し、ファイバー束 E の切断の層 (sheaf of sections) と呼ばれる。 ファイバー束 E の開集合 U 上の連続(局所)切断全体の成す空間はときに C(U,E) とも表され、また E の大域切断全体の成す空間はしばしば Γ(E) や Γ(B,E) と表される。 大域切断と特性類 切断はホモトピー論や代数的位相幾何学で扱われるが、そこでは大域切断が存在するか否か、存在するとすればどのくらい存在するかといったことが主要な研究目的の一つであり、層係数コホモロジーや特性類の理論が展開される。 例えば、主束が大域切断を持つ必要十分条件はそれが自明束となることである。 また例えば任意のベクトル束は必ず零切断と呼ばれる大域切断を持つが、至る所消えないような切断を持つのはそのオイラー類が零である場合に限られる。 滑らかな切断 (特に主束やベクトル束の)切断は微分幾何学においても非常に重要な道具である。 この場合は底空間 B が滑らかな多様体 M で、全空間 E が M 上の滑らかなファイバー束(つまり、E は滑らかな多様体で束射影 π: E → M は滑らかな写像)であるものと仮定するのが普通である。 このような設定のもとでは、開集合 U 上の E の滑らかな切断全体の成す空間 C∞(U,E) を考えることができる。 関連項目 ファイバー付け (Fibration) つづく http://wc2014.5ch.net/test/read.cgi/math/1434753250/129
130: 現代数学の系譜11 ガロア理論を読む [] 2015/07/11(土) 21:02:19.47 ID:FKo26YYw >>129 つづき 図がある https://ja.wikipedia.org/wiki/%E6%96%AD%E9%9D%A2_%28%E4%BD%8D%E7%9B%B8%E5%B9%BE%E4%BD%95%E5%AD%A6%29 図:束 p: E → B の切断 s は底空間 B と E の部分空間 s(B) とを同一視する方法を与える。 図:R2 におけるベクトル場の例。接ベクトル束の切断とは、実はベクトル場のことである。 おわり http://wc2014.5ch.net/test/read.cgi/math/1434753250/130
メモ帳
(0/65535文字)
上
下
前次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.024s