「コホモロジー」 [転載禁止]©2ch.net (562レス)
上下前次1-新
抽出解除 レス栞
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
1(3): 2015/01/12(月)02:50 ID:p6eZfblR(1/12) AAS
「コホモロジー」安藤 哲哉 編 日本評論社
本書は平成13年10月13日、20日に千葉大学で開催された公開講座「コホモロジー」をもとに加筆したもので、20世紀半ばに登場したコホモロジーという新しい道具を、新しい計算手段として、わかりやすく社会人や高校生等に解説しようとするものである。
層とかスキームの定義とかモチーフまでまともに言及してる。よくこんな一般向けの本掛けたなぁと思わない?
23(3): 2015/01/13(火)16:29 ID:cyE4aYki(2/2) AAS
138ページに「絶対 Galois 群は複雑であると述べたが、その構造を理解することは数論を研究する者の最も大きな夢のひとつである」とありますよね?
何故、絶対 Galois 群の構造を理解することが数論を研究する者の最も大きな夢のひとつになっているのでしょうか?
絶対 Galois 群の構造を理解できると何が嬉しいのでしょうか?具体的にどういうことがわかるのか教えて欲しいです。
また僕の所感では Galois コホモロジーは Galois 群の情報を落としすぎているように感じられます。
Galois 群の構造を調べるにあたって、Galois コホモロジーより良い道具はないものでしょうか?
48(4): 2015/04/25(土)00:30 ID:FX06mJf+(1/4) AAS
4ヶ月で集合論含めてマスターする方法教えて
集合論もよくわかんねwwwwwwww
55(3): 2015/04/25(土)09:25 ID:FX06mJf+(2/4) AAS
おい、コホモロジーのこころ売ってねーよwwwwwwww
中古で4万とかアホだろwwwww
俺も金も無いんだぞwwwwwwwww
しかもこれ集合論わかった前提で書いてるだろ
ふざけるなよwwwwww
64(4): 2015/04/29(水)06:18 ID:YdoQFkzO(1) AAS
どの集合論の本にも書いてあると教わったことですが
次の命題の証明がわかりません。
次の性質をみたす集合Xが存在する。
濃度がXの濃度より真に小なる部分集合のべき集合の濃度は
Xの濃度より真に小
ご存知の方はヒントを下さい。
77(4): 2015/05/08(金)08:51 ID:f0RSQBjF(1) AAS
>>75
X=supY_nというのは自然な包含順序によるものであり
したがってXはY_nの合併集合と考えてよいわけだが
そのXの部分集合Aの濃度がXの濃度より真に小であるという条件から
Aの濃度がどれかのY_nの濃度で押えられるということは
何によって保証されるのでしょうか。
>>76
省1
80(3): 2015/05/08(金)10:32 ID:NOQ/zVIb(2/4) AAS
ヒント: 任意の順序数 x, y に対し、
x < y ⇔ x∈y ⇔ (x⊆y かつ x≠y)
後は順序数の族の上限の定義を見よ。
90(3): 2015/05/09(土)08:32 ID:EW/Xkw4Y(3/3) AAS
環の極大イデアルの存在に選択公理が必要なことぐらいは常識なんだろうが
嵌めるキチガイのようにハメル基底連呼して濃度論ぐっだぐだ意味もなく証明に使う使えると勘違いし続けてる様は
可能性は低いがもしも将来訳が分かる様になれたら非常に黒歴史となるんだろうなぁ・・・。
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.025s