[過去ログ] Inter-universal geometry と ABC予想 (応援スレ) 77 (1002レス)
上下前次1-新
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
48(3): 現代数学の系譜 雑談 ◆yH25M02vWFhP 11/02(日)17:22 ID:PmfdHnoP(3/9) AAS
さて、ここは中高一貫校生も来る可能性があるから
公理的集合論について、下記のVitali set
と フルパワー選択公理との関係を書いておく
外部リンク:ja.wikipedia.org
ヴィタリ集合
ルベーグ非可測な実数集合の基本的な例である[1]
構成と証明
有理数体 Q は実数体 R の普通の加法についての部分群を成す。なので加法の商群 R/Q (つまり、有理数分の差を持つ実数同士を集めた同値類による剰余群) は有理数集合の互いに交わらない"平行移動コピー"によって出来ている。この群の任意の元はある r ∈ R についての Q + r として書ける。
R/Q の元は R の分割の1ピースである。そのピースは不可算個あり、各ピースはそれぞれ R の中で稠密である。R/Q の元はどれも [0, 1] と交わっており、選択公理によって [0, 1] の部分集合で、R/Q の代表系になっているものが取れる。このようにして作られた集合がヴィタリ集合と呼ばれているものである。
外部リンク:en.wikipedia.org
省10
上下前次1-新書関写板覧索設栞歴
あと 954 レスあります
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.024s