[過去ログ] ガロア第一論文と乗数イデアル他関連資料スレ13 (1002レス)
1-

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
167
(5): 現代数学の系譜 雑談 ◆yH25M02vWFhP 02/04(火)18:21 ID:+HgMDnV2(11/11) AAS
>>100-101
>治らないコピペ癖 ID:oyw47Vnz
>ほっとけ ID:pX4W9Cg1

ID:pX4W9Cg1は、御大ね
ID:oyw47Vnzは、おサル>>7-10 かな?

1)院試合格までは、数学の実力は主に試験で測られる
 限られた場所で、カンニング無しで、限られた時間内で どれだけ解けるか
2)しかし、院試合格の後の 数学の実力は なんでもあり
 カンニングありで、誰に相談しても 聞いても良い
 時間制約は、あっても年単位
省14
168: 02/04(火)18:28 ID:vSANYI5/(1/2) AAS
自分の言葉で語れる者はわずかであり
あとはこだまのようなもの

A. Weilは岡に語ったあと、人懐っこい笑顔を
浮かべながら
「あなたが文化勲章を貰われたので
奥さんはすっかりご機嫌ですね」
と言った。
169: 02/04(火)18:33 ID:kyySIsuH(19/19) AAS
>>167
>院試合格までは
大学一年4月に落ちこぼれた人がなんか言ってますね

>タネ本でカンニングしているのに
カンニングしても嘘デタラメ書いちゃう人がなんか言ってますね
170: 02/04(火)18:36 ID:vSANYI5/(2/2) AAS
わからない
171: 02/04(火)18:59 ID:PFLhGe5c(4/10) AAS
>>167
>院試合格までは、数学の実力は主に試験で測られる
 次元定理がチョームズいとか
 泣き言言ってる落ちこぼれに
 数学の院試は絶対受からんよ
172: 02/04(火)19:00 ID:PFLhGe5c(5/10) AAS
>>167
>院試合格の後の 数学の実力は なんでもあり
>カンニングありで、誰に相談しても 聞いても良い
 カンニングで間違える大●●野郎
173: 02/04(火)19:04 ID:PFLhGe5c(6/10) AAS
>>167
>タネ本でカンニング
 オチコボレはそもそも教科書が正しく読めず
 初歩から盛大に間違える
 院試?いやいや大学1年の微積と線形代数の単位落としてるだろ
 次元定理もわかんない●●じゃ仕方ない
174: 02/04(火)19:10 ID:PFLhGe5c(7/10) AAS
>>167
次元定理もわからん奴がハナタカするとかマジ🌲違い
175: 02/04(火)19:14 ID:PFLhGe5c(8/10) AAS
🐎🦌は理解してないことをコピペで誤魔化すが
🐎🦌はともかくウソをつくのが人でなし
176: 02/04(火)19:19 ID:PFLhGe5c(9/10) AAS
次元定理がムズいようじゃ
陰関数定理なんかワケワカメだろな
177: 02/04(火)19:30 ID:PFLhGe5c(10/10) AAS
🌲違いが●った時に言う言葉
院試 カンニング タネ本 ハナタカ

ま、どうせ院試で落ちて
社奴に成り下がった
屈辱が忘れられず
「実社会ではカンニングOK!
 タネ本もろコピべでも
 ハナタカしまくりだぜ」
とか喚いて、チラ読みで
必要な前提全部削りまくって
省2
178: 02/04(火)20:56 ID:04gi+31b(1) AAS
わからん
179: 02/04(火)21:04 ID:Ic3SxmhU(1) AAS
資源工学冶金学の鍛冶屋さん
日夜トンチンカントンチンカン
180
(1): 現代数学の系譜 雑談 ◆yH25M02vWFhP 02/05(水)00:12 ID:Md2R2j9H(1/5) AAS
>>160
>任意のベクトルを無限個のベクトルの線形結合で表すことである.ヒルベルト空間では,これを実現する正規直交基底を取ることがいつでもでき,有限次元空間とよく似た話が無限次元でも展開できる.フーリエ級数はその具体例として大変重要なものである.

これ、選択公理を使うだろうと思って調べていた
下記 山上滋先生 名大 関数解析入門 『命題4.5.ヒルベルト空間の正規直交基底は必ず存在する。(全然一意的ではないが。)
Proof.基本的なアイデアはの直交化であるが、正式にはのZorn補題を使う。各自、確かめよ』
ですね (^^

(参考)
外部リンク[html]:www.math.nagoya-u.ac.jp
授業記録 山上滋 名大
外部リンク[html]:www.math.nagoya-u.ac.jp
省21
181: 現代数学の系譜 雑談 ◆yH25M02vWFhP 02/05(水)00:13 ID:Md2R2j9H(2/5) AAS
つづき

付録E Kuratowski-Zornの定理
略す

外部リンク[htm]:www.ms.u-tokyo.ac.jp
河東泰之の「数理科学」古い記事リスト
外部リンク[pdf]:www.ms.u-tokyo.ac.jp
20 河東泰之, ヒルベルト空間と作用素環,「数理科学」 Vol.57-9, pp.29-35, サイエンス社,2019.

2. 有限次元空間から無限次元へ
略す
(引用終り)
省1
182
(4): 現代数学の系譜 雑談 ◆yH25M02vWFhP 02/05(水)07:51 ID:Md2R2j9H(3/5) AAS
>>180
>>任意のベクトルを無限個のベクトルの線形結合で表すことである.ヒルベルト空間では,これを実現する正規直交基底を取ることがいつでもでき,有限次元空間とよく似た話が無限次元でも展開できる.フーリエ級数はその具体例として大変重要なものである.
>これ、選択公理を使うだろうと思って調べていた
>下記 山上滋先生 名大 関数解析入門 『命題4.5.ヒルベルト空間の正規直交基底は必ず存在する。(全然一意的ではないが。)
>Proof.基本的なアイデアはの直交化であるが、正式にはのZorn補題を使う。各自、確かめよ』
>ですね (^^

<補足>
1)Zorn補題は、選択公理と同値
2)Zorn補題(選択公理)で、通常のベクトル空間(基底の有限和)から
 基底の無限個のベクトルの線形結合を使う ヒルベルト空間まで
省12
183: 現代数学の系譜 雑談 ◆yH25M02vWFhP 02/05(水)07:52 ID:Md2R2j9H(4/5) AAS
>>182 タイポ訂正

 その空間の基底の存在と、次元(ベクトル空間の場合 基底の集合の濃度を意味する。可算にする場合が多いらしい)が決められる
   ↓
 その空間の基底の存在と、次元(ヒルベルト空間の場合 基底の集合の濃度を意味する。可算にする場合が多いらしい)が決められる
184: 02/05(水)08:18 ID:5j19JkQh(1/2) AAS
>>182
> Zorn補題(選択公理)で、
> 線形空間の基底の存在と、
> 次元(基底の集合の濃度を意味する)が決められる
> 基底の存在定理の典型的な、使い方が>>110だね

>>111な 三ケタの数字を覚えられんのか? この昭和耄碌爺

で、>>112は解けたのか?

線形空間が有限次元なら、選択公理なんか使わんでも、
次元定理なんか直接証明できるぞ●●

大学1年の線型代数で習わんかったか?
省2
185
(2): 02/05(水)08:21 ID:5j19JkQh(2/2) AAS
>>182
> ある空間の 基底の存在定理、次元定理から
> 具体的な 基底候補が、実際の基底として採用できることが分る
 じゃ、RをQ上の線形空間としてみたときの基底を、具体的に構成してみてくれる?

 できるものならな
186
(2): 02/05(水)08:48 ID:DBPzopUM(1/2) AAS
>>185
そういう理屈が通じない相手であることがわからないということが
わからない
1-
あと 816 レスあります
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.027s