[過去ログ] やさしいフェルマーの最終定理の証明 (1002レス)
上下前次1-新
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
963: 2020/12/31(木)14:51 ID:xCj4yihs(409/414) AAS
また、
964: 2020/12/31(木)14:51 ID:xCj4yihs(410/414) AAS
始めましたな(笑)
965: 2020/12/31(木)14:52 ID:xCj4yihs(411/414) AAS
あとは
966: 2020/12/31(木)14:52 ID:xCj4yihs(412/414) AAS
ご自分で
967: 2020/12/31(木)14:52 ID:xCj4yihs(413/414) AAS
一気に
968: 日高 2020/12/31(木)17:41 ID:I7OiRC9L(45/50) AAS
【定理】x^2+y^2=z^2は自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+a2)^2…(4)となる。
(3)のx,y,zが有理数で、整数比となるならば、x,y,zが無理数でも、整数比となる。
(3)はyを有理数とすると、xは有理数となるので、x,y,zは整数比となる。
(4)のx,y,zは、(3)のx,y,zのa倍となるので、整数比となる。
∴n=2のとき、x^2+y^2=z^2は自然数解を持つ。
969: 日高 2020/12/31(木)17:42 ID:I7OiRC9L(46/50) AAS
【定理】x^2+y^2=z^2は自然数解を持つ。
x^2+y^2=(x+2)^2…(3)のyに13/2を代入する。
x=153/16,y=13/2,z=185/16
分母を払うと、ピタゴラス数、153,104,185となる
970: 日高 2020/12/31(木)17:45 ID:I7OiRC9L(47/50) AAS
【定理】x^3+y^3=z^3は自然数解を持たない。
【証明】x^3+y^3=z^3を、z=x+rとおいてx^3+y^3=(x+r)^3…(1)とする。
(1)をr^2{(y/r)^3-1}=a3{x^2+rx}(1/a)…(2)と変形する。
(2)はa=1、r^2=3のとき、x^3+y^3=(x+√3)^3…(3)となる。
(2)はa=1以外、r^2=a3のとき、x^3+y^3=(x+√(a3))^3…(4)となる。
(3)のx,y,zが無理数で、整数比となるならば、x,y,zが有理数でも、整数比となる。
(3)はyを有理数とすると、xは無理数となるので、x,y,zは整数比とならない。
(4)のx,y,zは、(3)のx,y,zの√a倍となるので、整数比とならない。
∴x^3+y^3=z^3は自然数解を持たない。
971: 日高 2020/12/31(木)17:46 ID:I7OiRC9L(48/50) AAS
【定理】x^3+y^3=z^3は自然数解を持たない。
x^3+y^3=(x+√(a3))^3…(4)の、z,xを有理数とすると、yは、無理数となる。
理由:(3)のx,yが整数比とならないので、(4)のx,yも整数比とならない。
972: 日高 2020/12/31(木)17:47 ID:I7OiRC9L(49/50) AAS
【定理】x^7+y^7=z^7は自然数解を持たない。
【証明】x^7+y^7=z^7を、z=x+rとおいてx^7+y^7=(x+r)^7…(1)とする。
(1)をr^6{(y/r)^7-1}=a7{x^6+…+(r^5)x}(1/a)…(2)と変形する。
(2)はa=1、r^6=7のとき、x^7+y^7=(x+7^{1/6})^7…(3)となる。
(2)はa=1以外、r^6=a7のとき、x^7+y^7=(x+(a7)^{1/6})^7…(4)となる。
(3)のx,y,zが無理数で、整数比となるならば、x,y,zが有理数でも、整数比となる。
(3)はyを有理数とすると、xは無理数となるので、x,y,zは整数比とならない。
(4)のx,y,zは、(3)のx,y,zのa^{1/6}倍となるので、整数比とならない。
∴x^7+y^7=z^7は自然数解を持たない。
973: 日高 2020/12/31(木)17:49 ID:I7OiRC9L(50/50) AAS
【定理】x^7+y^7=z^7は自然数解を持たない。
x^7+y^7=(x+(a7)^{1/6})^7…(4)の、z,xを有理数とすると、yは、無理数となる。
理由:(3)のx,yが整数比とならないので、(4)のx,yも整数比とならない。
974: 2020/12/31(木)18:43 ID:xCj4yihs(414/414) AAS
また、次スレで会いましょうw
975: 日高 2020/12/31(木)21:40 ID:f068YA4E(1/2) AAS
【定理】x^13+y^13=z^13は自然数解を持たない。
【証明】x^13+y^13=z^13を、z=x+rとおいてx^13+y^13=(x+r)^13…(1)とする。
(1)をr^12{(y/r)^13-1}=a13{x^12+…+(r^11)x}(1/a)…(2)と変形する。
(2)はa=1、r^12=13のとき、x^13+y^13=(x+13^{1/12})^13…(3)となる。
(2)はa=1以外、r^12=a13のとき、x^13+y^13=(x+(a13)^{1/12})^13…(4)となる。
(3)のx,y,zが無理数で、整数比となるならば、x,y,zが有理数でも、整数比となる。
(3)はyを有理数とすると、xは無理数となるので、x,y,zは整数比とならない。
(4)のx,y,zは、(3)のx,y,zのa^{1/12}倍となるので、整数比とならない。
∴x^13+y^13=z^13は自然数解を持たない。
976: 日高 2020/12/31(木)21:42 ID:f068YA4E(2/2) AAS
【定理】x^13+y^13=z^13は自然数解を持たない。
x^13+y^13=(x+(a13)^{1/12})^13…(4)の、z,xを有理数とすると、yは、無理数となる。
理由:(3)のx,yが整数比とならないので、(4)のx,yも整数比とならない。
977: 2020/12/31(木)23:53 ID:H66OPbj7(1) AAS
このバカ日高は次スレまた立てるんかよ
レスもスレ立てもDOTに同じ
生きている意味ないな
978: 日高 2021/01/01(金)08:23 ID:Yj6iltXw(1/9) AAS
【定理】x^19+y^19=z^19は自然数解を持たない。
【証明】x^19+y^19=z^19を、z=x+rとおいてx^19+y^19=(x+r)^19…(1)とする。
(1)をr^18{(y/r)^19-1}=a19{x^18+…+(r^17)x}(1/a)…(2)と変形する。
(2)はa=1、r^18=19のとき、x^19+y^19=(x+19^{1/18})^19…(3)となる。
(2)はa=1以外、r^18=a19のとき、x^19+y^19=(x+(a19)^{1/18})^19…(4)となる。
(3)のx,y,zが無理数で、整数比となるならば、x,y,zが有理数でも、整数比となる。
(3)はyを有理数とすると、xは無理数となるので、x,y,zは整数比とならない。
(4)のx,y,zは、(3)のx,y,zのa^{1/18}倍となるので、整数比とならない。
∴x^19+y^19=z^19は自然数解を持たない。
979: 日高 2021/01/01(金)08:25 ID:Yj6iltXw(2/9) AAS
【定理】x^19+y^19=z^19は自然数解を持たない。
x^19+y^19=(x+(a19)^{1/18})^19…(4)の、z,xを有理数とすると、yは、無理数となる。
理由:(3)のx,yが整数比とならないので、(4)のx,yも整数比とならない。
980(1): 2021/01/01(金)09:04 ID:mVE9FUK8(1) AAS
正月なんだから
x^2021+y^2021=z^2021は自然数解を持たない
ぐらいに挑戦して欲しいw
981: 日高 2021/01/01(金)09:20 ID:Yj6iltXw(3/9) AAS
>980
ぐらいに挑戦して欲しいw
x^2021+y^2021=z^2021は自然数解を持たない
x^2021+y^2021=(x+(a2021)^{1/2020})^2021…(4)の、z,xを有理数とすると、yは、無理数となる。
理由:(3)のx,yが整数比とならないので、(4)のx,yも整数比とならない。
982: 日高 2021/01/01(金)09:22 ID:Yj6iltXw(4/9) AAS
【定理】x^3+y^3=z^3は自然数解を持たない。
【証明】x^3+y^3=z^3を、z=x+rとおいてx^3+y^3=(x+r)^3…(1)とする。
(1)をr^2{(y/r)^3-1}=a3{x^2+rx}(1/a)…(2)と変形する。
(2)はa=1、r^2=3のとき、x^3+y^3=(x+√3)^3…(3)となる。
(2)はa=1以外、r^2=a3のとき、x^3+y^3=(x+√(a3))^3…(4)となる。
(3)のx,y,zが無理数で、整数比となるならば、x,y,zが有理数でも、整数比となる。
(3)はyを有理数とすると、xは無理数となるので、x,y,zは整数比とならない。
(4)のx,y,zは、(3)のx,y,zの√a倍となるので、整数比とならない。
∴x^3+y^3=z^3は自然数解を持たない。
上下前次1-新書関写板覧索設栞歴
あと 20 レスあります
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.097s