[過去ログ] 現代数学の系譜 カントル 超限集合論2 (1002レス)
上下前次1-新
抽出解除 レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
631(3): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2020/03/24(火)07:52 ID:1Hky7X6d(1/5) AAS
>>625 追加
(>>597より 引用開始)
ここで、出題の列Xと無関係な
見知らぬ "おっさん" が勝手に、n個の列 Y1〜Ynを作って
P(d<dmax)=n/(n+1)となるので、列 Y1〜Ynの箱を開けて
dmaxを知り、列Xにおいて dmax+1以降のしっぽの箱を開け
>>593と同様に
列Xの代表(rXとする)を知り、"rXd=Xd"と推測が的中することになる
(確率 P(d<dmax)=n/(n+1) 、即ち 1-ε でw )
これは、全くバカげた話ですw
省14
632(3): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2020/03/24(火)07:55 ID:1Hky7X6d(2/5) AAS
>>631
つづき
6.明らかに、”うまく代表rXを選ぶことができて、d番目からさきが一致するようにできる”がおかしい
何がどう おかしいか?
1)1つは、dが自然数N全体を渡るとき(簡単に一様分布を仮定して)、有限dmaxに対して、確率P(d<dmax)は常に0
∵ dが自然数N全体を渡るので、自然数N全体に対して、d<dmaxの部分集合は無限小にすぎない
2)”d番目からさきが一致する”を考えてみると、これは”d番目からさき”の無限個の箱の数が一致するってことですw(^^;
列Xと代表rXとの比較で、1つの箱が一致する確率をpとすると、2つならp^2、n個ならp^n、無限ならp^∞=0
つまり、”うまく代表rXを選ぶことができて、d番目からさきが一致するようにできる”確率は0 !!
3)確率は0だからといって、そのような代表rXが存在しないわけではない
省5
637: 2020/03/24(火)22:00 ID:RQgrFGVd(1/2) AAS
>>631
>3.見知らぬ "おっさん" が勝手に、数列Yを作って、同じように同値類から決定番号dmaxを得る
> 1列作った場合、Xとの2列の比較で、d<dmaxとなる確率P(d<dmax)=1/2
大間違い
あれほど説明したのに未だに解ってないw バカに数学は無理w
>4.さて、dmax+1から先を開けるのを、dmax+1+k(k>=1)から先を開けると改良できる
> そうすると、d番目からdmax+k までの箱が、ごっそり的中できる。kは任意だから、100兆個でも1000兆個でも、ごっそり的中できる
どうやってdを知るんだよw
>5.あきらかに、これはおかしい。
おかしいのはおまえw
638: 2020/03/24(火)22:08 ID:RQgrFGVd(2/2) AAS
>>631
バカに質問w
なんで↓が成立すると思ってるの?
>ここで、出題の列Xと無関係な
> 見知らぬ "おっさん" が勝手に、n個の列 Y1〜Ynを作って
> P(d<dmax)=n/(n+1)となるので、列 Y1〜Ynの箱を開けて
> dmaxを知り、列Xにおいて dmax+1以降のしっぽの箱を開け
> >>593と同様に
> 列Xの代表(rXとする)を知り、"rXd=Xd"と推測が的中することになる
> (確率 P(d<dmax)=n/(n+1) 、即ち 1-ε でw )
省2
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.044s