[過去ログ] 現代数学の系譜 カントル 超限集合論2 (1002レス)
前次1-
抽出解除 レス栞

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
593
(12): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2020/03/22(日)11:42 ID:TMbOZsnt(10/22) AAS
>>450 補足
<時枝理論の複数列の比較による確率計算を潰す試みw(゜ロ゜; >
広中−岡のエピソードの教訓により、さらに時枝を抽象化して(余計な要素を省いて) 考えてみよう

いま、問題の出題された数列
可算無限数列X:X1,X2,・・Xd,Xd+1,・・
に対し
無関係な人が数列を作ったとする
可算無限数列Y:Y1,Y2,・・Yd',Yd'+1,・・

ここに、d,d'はそれぞれの列の代表番号である
もし、d<d'ならば、列Yの箱を開けて、d'を知り
省23
594
(2): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2020/03/22(日)11:43 ID:TMbOZsnt(11/22) AAS
>>593
つづき

おさらいすると,仮定のもと, s^k(D+1),s^k(D+2),s^k(D+3),・・・を見て代表r=r(s^k) が取り出せるので
列r のD番目の実数r(D)を見て, 「第k列のD番目の箱に入った実数はs^k(D)=rDと賭ければ,めでたく確率99/100で勝てる.
確率1-ε で勝てることも明らかであろう.

外部リンク:ja.wikipedia.org
広中平祐

特異点解消問題について、1963年に日本数学会で講演した。その内容は、一般的に考えるのでは問題があまりに難しいから、様々な制限条件を付けた形でまずは研究しようという提案であった。
その時、岡潔が立ち上がり、問題を解くためには、広中が提案したように制限をつけていくのではなく、むしろ逆にもっと理想化した難しい問題を設定して、それを解くべきであると言った。
その後、広中は制限を外して理想化する形で解き、フィールズ賞の受賞業績となる[4]。
省1
595
(1): 2020/03/22(日)11:53 ID:+SjNGkOL(1/10) AAS
>>593
>3.そして、2列だから、確率 P(d<d')=1/2 というけれど、2列関係ないでしょ?!w(^^;
だから時枝はそんなこと言ってないと何度言えばw
おまえホント頭悪いね
597
(4): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2020/03/22(日)12:44 ID:TMbOZsnt(12/22) AAS
>>593 補足
>無関係な人が数列を作ったとする
>可算無限数列Y:Y1,Y2,・・Yd',Yd'+1,・・

さて さらに、この人(以下、”おっさん”と称する w)
が、もっと数列を作ったとする
先の数列を Y1として
追加数列は
Y2:Y21,Y22,・・Y2d'',Y2d''+1,・・
Y3:Y31,Y32,・・Y3d'',Y3d''+1,・・
 ・
省17
600
(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2020/03/22(日)12:54 ID:TMbOZsnt(14/22) AAS
>>595-596
 >>593より”広中−岡のエピソードの教訓”を読みましょう〜!!(゜ロ゜;
<時枝を抽象化して(余計な要素を省いて) 考えてみよう〜!>
601: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2020/03/22(日)12:56 ID:TMbOZsnt(15/22) AAS
>>600 訂正追加

 >>593より”広中−岡のエピソードの教訓”を読みましょう〜!!(゜ロ゜;
  ↓
 >>594より”広中−岡のエピソードの教訓”を読みましょう〜!!(゜ロ゜;

かな(^^
606
(1): 2020/03/22(日)14:14 ID:OFMTPL9H(1/8) AAS
>>593 >>597
出題の列Xを固定するなら、的中確率はn/n+1じゃなくて1だけど

(証明)
列Xの決定番号をd
開ける項の番号をm
とする

d<=mなら代表元と一致
d>m なら一般的に代表元と一致しない

d<=mとなるmは無限個
d>mとなるmは有限個
省2
625
(4): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2020/03/23(月)07:54 ID:8hlHRLPg(1) AAS
>>597 補足説明

(引用開始)
ここで、出題の列Xと無関係な
 見知らぬ "おっさん" が勝手に、n個の列 Y1〜Ynを作って
 P(d<dmax)=n/(n+1)となるので、列 Y1〜Ynの箱を開けて
 dmaxを知り、列Xにおいて dmax+1以降のしっぽの箱を開け
 >>593と同様に
 列Xの代表(rXとする)を知り、"rXd=Xd"と推測が的中することになる
 (確率 P(d<dmax)=n/(n+1) 、即ち 1-ε でw )
これは、全くバカげた話ですw
省15
631
(3): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2020/03/24(火)07:52 ID:1Hky7X6d(1/5) AAS
>>625 追加
(>>597より 引用開始)
ここで、出題の列Xと無関係な
 見知らぬ "おっさん" が勝手に、n個の列 Y1〜Ynを作って
 P(d<dmax)=n/(n+1)となるので、列 Y1〜Ynの箱を開けて
 dmaxを知り、列Xにおいて dmax+1以降のしっぽの箱を開け
 >>593と同様に
 列Xの代表(rXとする)を知り、"rXd=Xd"と推測が的中することになる
 (確率 P(d<dmax)=n/(n+1) 、即ち 1-ε でw )
これは、全くバカげた話ですw
省14
638: 2020/03/24(火)22:08 ID:RQgrFGVd(2/2) AAS
>>631
バカに質問w 
なんで↓が成立すると思ってるの?
>ここで、出題の列Xと無関係な
> 見知らぬ "おっさん" が勝手に、n個の列 Y1〜Ynを作って
> P(d<dmax)=n/(n+1)となるので、列 Y1〜Ynの箱を開けて
> dmaxを知り、列Xにおいて dmax+1以降のしっぽの箱を開け
> >>593と同様に
> 列Xの代表(rXとする)を知り、"rXd=Xd"と推測が的中することになる
> (確率 P(d<dmax)=n/(n+1) 、即ち 1-ε でw )
省2
749
(3): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2020/03/28(土)12:43 ID:MRwZqC/h(3/5) AAS
(>>593より)
<時枝理論の複数列の比較による確率計算を潰す試みw(゜ロ゜; >
により、時枝の複数列の比較は、数学的には本質ではない ことは、すでに示した

さて、時枝の手法は、ある方法で、大きな数d'を与えて
問題の数列の決定番号dに対し d<d' とできれば
列Xにおいて、Xd'+1から先のしっぽの箱を開けて
列Xの代表(rXとする)を知り、"rXd=Xd"と推測が的中できるというもの

これが成立たないことも、すでに>>593に説明した

さらに、ここを掘り下げてみよう!
1.ある方法で、d'が与えられたとする
省20
750: 2020/03/28(土)13:08 ID:+ARtdTH+(9/13) AAS
>>749
>(>>593より)
><時枝理論の複数列の比較による確率計算を潰す試みw(゜ロ゜; >
>により、時枝の複数列の比較は、数学的には本質ではない ことは、すでに示した

>3.そして、2列だから、確率 P(d<d')=1/2 というけれど(>>593
言ってませんけど?
ぜんぜん解ってないね

>1.ある方法で、d'が与えられたとする
>5.結局、時枝の数当て 不成立です!
おまえの云うある方法≠時枝の方法 なので無意味
省1
751: 2020/03/28(土)13:16 ID:+ARtdTH+(10/13) AAS
>>593
>3.そして、2列だから、確率 P(d<d')=1/2 というけれど
2列のいずれかをランダムに選ぶから1/2が言えるのであって、選ぶ列を固定したら1/2は言えません。
ていうかなんで1/2が言えると思ってるの?バカ?
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.049s