[過去ログ] 現代数学の系譜 カントル 超限集合論2 (1002レス)
前次1-
抽出解除 レス栞

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
586
(3): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2020/03/22(日)09:53 ID:TMbOZsnt(3/22) AAS
>>582
おサル、それ誤読だよ
”misunderstanding”は、下記引用の3)のとこでしょ
でも、面白いね、文献の”philosophical reason”の「 independently」の
”orthodox (Kolmogorovian) probability theory”と異なる見方(哲学だけれど)

>>553より参考)
外部リンク:mathoverflow.net
Probabilities in a riddle involving axiom of choice Denis氏 Dec 9 '13
DR Pruss氏
(抜粋)
省9
587
(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2020/03/22(日)09:53 ID:TMbOZsnt(4/22) AAS
>>586
つづき

4)What we have then is this: For each fixed opponent strategy, if i is chosen uniformly independently of that strategy (where the "independently" here isn't in the probabilistic sense), we win with probability at least (n?1)/n.
That's right. But now the question is whether we can translate this to a statement without the conditional "For each fixed opponent strategy". ? Alexander Pruss Dec 19 '13 at 15:05
5)How about describing the riddle as this game, where we have to first explicit our strategy, then an opponent can choose any sequence. then it is obvious than our strategy cannot depend on the sequence. The riddle is "find how to win this game with proba (n-1)/n, for any n." ? Denis Dec 19 '13 at 19:43
6)But the opponent can win by foreseeing what which value of i we're going to choose and which choice of representatives we'll make. I suppose we would ban foresight of i? ? Alexander Pruss Dec 19 '13 at 21:25
7)yes the order would be: 1)describe the probabilistic strategy 2)opponent choses a sequence 3)probabilistic variable i is instanciated ? Denis Dec 19 '13 at 23:02

(引用終り)
588: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2020/03/22(日)10:02 ID:TMbOZsnt(5/22) AAS
>>586
>Of course, one could mean "independently" here in some non-mathematical causal sense. (And there may be philosophical reason for doing this: fitelson.org/doi.pdf )
(補足)
外部リンク[pdf]:fitelson.org
Synthese ・ September 2014?137 (3), 273-323
Declarations of Independence
Branden Fitelson and Alan Hajek
Abstract
According to orthodox (Kolmogorovian) probability theory, conditional probabilities are by definition certain ratios of unconditional probabilities. As a result, orthodox conditional probabilities are regarded as undefined whenever their antecedents have zero unconditional probability. This has important ramifications for the notion of probabilistic independence.
Traditionally, independence is defined in terms of unconditional probabilities (the factorization of the relevant joint unconditional probabilities). Various “equivalent” formulations of independence can be given using conditional probabilities.
省8
592: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2020/03/22(日)11:13 ID:TMbOZsnt(9/22) AAS
>>586-587
まとめ

数学DRにして大学教授(数理哲学)のPruss氏の回答に対して
質問者 Denis氏 (コンピュータサイエンス)は、確率の測度論に入っていけない
”but for this we only need the uniform distribution on {0,…,n}”の一点ばり

対して Pruss氏は、確率の独立概念の哲学文献などを示して、説得しようとするが、理解できないDenis氏
圧倒的に、Pruss氏の数学レベルが高い

まあ、測度論的確率論の知識が欠落しているのでしょうね、理解できないDenis氏は
測度論的確率論を、講義するわけにもいかず、DR Pruss氏はさじ投げた
(このスレに同じw(^^; )
省11
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.049s