[過去ログ] 現代数学の系譜 カントル 超限集合論2 (1002レス)
前次1-
抽出解除 レス栞

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
476
(4): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2020/03/12(木)21:09 ID:Fux/6iYZ(4/4) AAS
>>466 さらにさらに補足

十六元数とか、あるよね
あるいは、多元数とか(下記)

で、例えば 十六元数は、「その全体はしばしば S で表される」らしい(下記)
時枝にならい 十六元数の可算無限長の数列を作ります
時枝理論を適用して、十六元数列 S:S1,S2,・・Si,・・ で、数列のしっぽの同値類を、実数Rと同様に作り、代表からSiを確率1-εで的中できま〜す!
(時枝理論が正しければねぇ〜ww(^^; )

で、実数R ⊂ S十六元数 ですから、箱に入れる数を 実数Rに限定しても 良いですよね
さて、DR Pruss氏が指摘するのと同様に、十六元数列の代表ですから、前述の複素数からのアナロジーでも分かるように、
S の基底を成す16個の単位十六元数 e0 = 1, e1, e2, e3, …, e15で、実数以外の”e1, e2, e3, …, e15”たちの成分が0でない十六元数が出てくる
省16
477: 2020/03/12(木)21:22 ID:4k5QcSKk(14/17) AAS
>>476
>出題が実数列なのに、答えの候補に、十六元数が出てくるとは、これ如何にぃ〜! ww(^^;
如何にとは?
勝率1-εが達成できるなら時枝戦略成立ですけど何か?
478: 2020/03/12(木)21:27 ID:4k5QcSKk(15/17) AAS
>>476
>数列のしっぽの同値類を、実数Rと同様に作り
集合X上の同値関係〜を定義した瞬間にX/〜が存在している。作るものではないと何度言えばw
時枝を論じたいならいいかげんに同値類勉強してくれませんか?なんでそんなに勉強嫌いなの?
481: 2020/03/12(木)22:19 ID:Hve1PEuR(2/2) AAS
>>476
> 出題が実数列なのに、答えの候補に、十六元数が出てくるとは、
> これ如何にぃ〜!

それは箱に十六元数を入れるルールだったら回答者は何の情報も得なければ
「十六元数で独立同分布を仮定する」ってことですね

> 十六元数の可算無限長の数列を作ります
> 箱に入れる数を 実数Rに限定しても 良いですよね

「十六元数で独立同分布を仮定」をガセタは自分で否定するのね

この場合は回答者は箱を開ければ十六元数でなくて実数を考えればよく
R^Nの同値類を考えれば十分であることは分かります
483
(4): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2020/03/13(金)08:03 ID:nz3HyF4S(2/5) AAS
>>476 補足
(引用開始)
で、例えば 十六元数は、「その全体はしばしば S で表される」らしい(下記)
時枝にならい 十六元数の可算無限長の数列を作ります
時枝理論を適用して、十六元数列 S:S1,S2,・・Si,・・ で、数列のしっぽの同値類を、実数Rと同様に作り、代表からSiを確率1-εで的中できま〜す!
(時枝理論が正しければねぇ〜ww(^^; )
(引用終り)

1)可算長の十六元数列 S:S1,S2,・・Si,・・ で、数列のしっぽの同値類を、実数Rの列と同様に作ります
2)そうすると、数列の しっぽの部分のみ実数という同値類が考えられます
  S':S1,S2,・・Si,・・,rj,rj+1,・・ とします (rj,rj+1などは実数。S1,S2などは実数ではない十六元数です)
省20
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.036s