[過去ログ] 現代数学の系譜 カントル 超限集合論2 (1002レス)
前次1-
抽出解除 レス栞

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
450
(8): 現代数学の系譜 雑談 ◆e.a0E5TtKE 2020/03/12(木)11:19 ID:FZfOcjPG(2/10) AAS
>>444
> 4)時枝を1列で考えます。可算無限長L(=∞)の列に対し、代表番号dは有限
> 5)そういう有限dを使った数当ては、出来ないってことです

 下記引用の広中−岡のエピソードの教訓は、
 数学は 不必要な条件を落として、抽象化して純化した方が、
 見通しが良いということ。数学はそれができる

これを時枝で考えてみると、要するに、時枝の数当ての原理は
「長さLの数列があって、
 問題の数列X:X1,X2,・・,Xi,Xi+1・・ において、
 同値類の数列Xの属する同値類の代表列rをうまく選んで
省18
451
(1): 現代数学の系譜 雑談 ◆e.a0E5TtKE 2020/03/12(木)11:29 ID:FZfOcjPG(3/10) AAS
>>450 補足

時枝は、複数列の比較という 不純な要素を混ぜて
十分大きな数 i+m が選べるように、錯覚させているだけなのです
でも、数列の長さ L=∞の場合には、有限の i+m による数当ては不可です

”無限”を、しっかり理解している人は、誤魔化されない
特に、大学教程の確率論で、無限族 X1,X2,・・,Xi,Xi+1・・ を学んだ人は

おサルは、哀れな素人氏相手に「無限がぁ〜」とほざく
自分たちも、”無限”が分かっていないのにね

”無限”を、しっかり理解している人からみれば、それ 同じ穴の狢ですよw
QED (^^;
452: 2020/03/12(木)11:44 ID:4k5QcSKk(4/17) AAS
>>450
>ですが、問題はそのような、十分大きな数i+mを選ぶことはできないということ
できます。複数列を作ればよいだけです。
複数列を作れば、その中で単独最大の決定番号を持つ列はたかだか1列であり、その列以外は目的の”十分大きな数”が得られます。

まったく分かってませんね。時枝戦略を論じたいなら正しく理解することから始めましょう。
455: 2020/03/12(木)12:05 ID:4k5QcSKk(7/17) AAS
>>450
>下記引用の広中−岡のエピソードの教訓は、
>数学は 不必要な条件を落として、抽象化して純化した方が、
>見通しが良いということ。数学はそれができる
時枝戦略において複数列を作ることは必要不可欠です。
不要な条件?まったく分かってませんね。時枝戦略を論じたいなら正しく理解することから始めましょう。
456: 2020/03/12(木)13:25 ID:4k5QcSKk(8/17) AAS
>>450
>ですが、問題はそのような、十分大きな数i+mを選ぶことはできないということ
いいえ、できます

>数学は 不必要な条件を落として、抽象化して純化した方が、
>見通しが良いということ。数学はそれができる
などという屁理屈によって

> 4)時枝を1列で考えます。
という改悪を正当化さえしなければね
458
(2): 現代数学の系譜 雑談 ◆e.a0E5TtKE 2020/03/12(木)14:16 ID:FZfOcjPG(5/10) AAS
>>450 補足

補足します
1)いま、自然数Nに属する 2数 x,y ∈N があったとする
  0<= x,y <=n (nは1以上の有限の自然数)
  として、2数 x,y が、ランダムに0〜nの数から選ばれたとすれば
  確率 P(x<y)=1/2 ですね (x<yである確率、但し、簡単のために x=yの場合を除く)
2)ところで、二人が どちらが大きな数を唱えるか のゲームを考える(大きい数が勝ち)
  もし、ランダムに数を選ぶしかないなら、勝率は1/2です
  もし、自由に数を選べるなら、最大のnを、(お互い)選ぶから、引き分けになるだろう
3)ところで、最大のnの制約なしで、自然数Nから無制限に選べるとすれば
省7
461
(2): 現代数学の系譜 雑談 ◆e.a0E5TtKE 2020/03/12(木)15:49 ID:FZfOcjPG(7/10) AAS
>>460
おサルは、毛が3本足りない
知恵が無いな〜w(゜ロ゜;

・n→∞を考えた時に、nが有限とは異なる数理的現象が起きる
・例えば、下記のコーシー分布はどうか? ”平均と分散が定義されない”、”大数の法則が成立しない”、”中心極限定理も成立しません”などです
・コーシー分布は 裾が重い分布です。でも、まだ、裾はn→∞で、減衰して 極限で0になります
・しかし、時枝の決定番号dは、全く減衰しません。裾はn→∞で、減衰せず 極限で0以外の値を持ちます
 そういう分布では、決定番号の大小比較による確率計算は、不可です。
(これ、数学的には DR Pruss氏の”conglomerability assumption”による説明です(>>450))

(参考)
省24
482
(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2020/03/13(金)07:36 ID:nz3HyF4S(1/5) AAS
>>480
>「自然数の集合Nからランダムに元を選ぶ」
>記事にそんなことが書いてあれば速攻で問題になります。馬鹿も休み休み言って下さいね。

 (>>450より)
 下記引用の広中−岡のエピソードの教訓は、
 数学は 不必要な条件を落として、抽象化して純化した方が、
 見通しが良いということ。数学はそれができる
 (引用終り)

そこで、時枝記事の原理を抽象化して、「数列のしっぽの同値類と代表と決定番号から、ある箱Xiの数を確率1-εで的中できる」理論としました
こう抽象化すると、箱に入れる数は、実数でなくとも良いことが分かる
省7
593
(12): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2020/03/22(日)11:42 ID:TMbOZsnt(10/22) AAS
>>450 補足
<時枝理論の複数列の比較による確率計算を潰す試みw(゜ロ゜; >
広中−岡のエピソードの教訓により、さらに時枝を抽象化して(余計な要素を省いて) 考えてみよう

いま、問題の出題された数列
可算無限数列X:X1,X2,・・Xd,Xd+1,・・
に対し
無関係な人が数列を作ったとする
可算無限数列Y:Y1,Y2,・・Yd',Yd'+1,・・

ここに、d,d'はそれぞれの列の代表番号である
もし、d<d'ならば、列Yの箱を開けて、d'を知り
省23
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.041s