[過去ログ] 現代数学の系譜 カントル 超限集合論2 (1002レス)
前次1-
抽出解除 レス栞

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
201
(3): 現代数学の系譜 雑談 ◆e.a0E5TtKE 2020/01/02(木)09:15 ID:YLjNnjPy(1/11) AAS
>>197
すでに>>152-155に書いたように
1)外部リンク:ja.wikipedia.org
 ペアノの公理
任意の自然数 a にはその後者 (successor)、suc(a) が存在する(suc(a) は a + 1 の "意味")。
ペアノの公理は以下の図にまとめることができる:
x→f(x)→f(f(x))→f(f(f(x)))→・・・
ここで、各f(x),f(f(x)),f(f(f(x))),...は明確に区別可能。
存在と一意性
集合論における標準的な構成によって、ペアノシステムの条件を満たす集合が存在することを示せる。
省29
203: 2020/01/02(木)09:34 ID:lJNP8tAT(3/23) AAS
>>201
>Zermeloの後者関数 「0 := {}, suc(a) := {a} 」の
>順序位相(英語版)に関する極限点としてωが定義される

Nの順序位相なら、Nはノンコンパクトだから
0,1,2,… はNで収束しない

ザンネンデシタwwwwwww
204: 現代数学の系譜 雑談 ◆e.a0E5TtKE 2020/01/02(木)09:40 ID:YLjNnjPy(2/11) AAS
>>201 補足
> ペアノの公理
>任意の自然数 a にはその後者 (successor)、suc(a) が存在する(suc(a) は a + 1 の "意味")。

さて
0 := {}
として

「suc(a) は a + 1 」を生かして
suc(a) :={{a},0}と
定義してみよう
この場合、1以上の各集合の要素の数は2だ
省19
235
(1): 2020/01/02(木)16:54 ID:G/YeCJ4m(1/8) AAS
>>201
>4)こうやって構成した ペアノシステムによるシングルトンのωが、正則性公理に反するはずもない
妄想乙

>Zermeloの後者関数 「0 := {}, suc(a) := {a} 」
>の
>順序位相(英語版)に関する極限点として
>ωが定義される
>それだけのこと
バカは他人も自分と同じくらいバカだと思いたいようだが、それも妄想
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.053s