[過去ログ] フェルマーの最終定理の簡単な証明4 (1002レス)
上下前次1-新
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
101(2): 日高 2019/12/22(日)18:56 ID:JmVFhdX8(19/51) AAS
>96
>「0より大きい3つの数x,y,zについてx^2×1=(z+y)×(z-y)が成り立つとき、必ずx^2=(z+y)である」は間違いである…結果ハ
1=z-yのとき、必ずx^2=z+yとなります。
102(1): 2019/12/22(日)19:16 ID:EfTr4oQ/(5/13) AAS
>>101
何度も言われているように、x,y,zがどんな数なのかはっきり書いていなければ証明とは言えません。
0より大きい3つの数x,y,zについて1=z-yが成り立たない組み合わせはいくらでもあります。
103(1): 2019/12/22(日)19:38 ID:EfTr4oQ/(6/13) AAS
考察ハ'
文イ''の「必ずA=Cである」を「必ずB=Dである」に置き換えても同じ考察が可能なので
「0より大きい3つの数x,y,zについてx^2×1=(z+y)×(z-y)が成り立つとき、必ず1=(z-y)である」は間違いである…結果ハ'
104: 2019/12/22(日)20:13 ID:aKriljiH(2/2) AAS
>>100
ありがとう。それは難儀ですね。
105: 日高 2019/12/22(日)20:26 ID:JmVFhdX8(20/51) AAS
>102
>何度も言われているように、x,y,zがどんな数なのかはっきり書いていなければ証明とは言えません。
0より大きい3つの数x,y,zについて1=z-yが成り立たない組み合わせはいくらでもあります。
x,y,zは、有理数です。
106(1): 2019/12/22(日)20:28 ID:CtNCJB0X(1) AAS
>>101 素晴らしい超完璧です。
尚ワィは、日高さん応援する者です。
フェルマの定理はよく知らん。でも
z-y=1なら、x,y,zが自然数でも
x^2×1=(z+y)×(z-y)になると思います。
しかもx,y,zの組み合せ、必ず無限個
(x,y,z)=(3,4,5)
(x,y,z)=(5,12,13)
(x,y,z)=(7,24,25)
(x,y,z)=(9,40,41)
省5
107(2): 日高 2019/12/22(日)20:30 ID:JmVFhdX8(21/51) AAS
>103
>考察ハ'
文イ''の「必ずA=Cである」を「必ずB=Dである」に置き換えても同じ考察が可能なので
「0より大きい3つの数x,y,zについてx^2×1=(z+y)×(z-y)が成り立つとき、必ず1=(z-y)である」は間違いである…結果ハ'
1=(z-y)のとき、必ず1=(z-y)となります。
考察ハ'は、1=(z-y)のとき、がありません。
108(1): 2019/12/22(日)20:33 ID:zXV7IPoi(6/12) AAS
> 87
> AB=CDならば、B=Dのとき、A=Cとなります。
> AB=CDならば、B=Cのとき、A=Dとなります。
じゃあなんで
> 【証明】pは奇数なのでx^p+y^p=(x+y){x^(p-1)-x^(p-2)y+…+y^(p-1)}と変形できる。
> したがって、z^p×1=(x+y){x^(p-1)-x^(p-2)y+…+y^(p-1)}…(1)となる。
> (1)の左辺の右側と右辺の右側は等しいので、1={x^(p-1)-x^(p-2)y+…+y^(p-1)}…(2)となる。
ここでは(右側)=(左側)を無視するの?
省3
109(1): 2019/12/22(日)20:37 ID:zXV7IPoi(7/12) AAS
あと、
>>>AB=CDのとき、成立する連立方程式は何組ある?
>>よくわかりません。
>マジかw
>1組は、A=CとB=D。全部で何組?
これも答えて。
110: 日高 2019/12/22(日)20:41 ID:JmVFhdX8(22/51) AAS
>106
ありがとうございます。
111: 日高 2019/12/22(日)20:59 ID:JmVFhdX8(23/51) AAS
>107
>1=(z-y)のとき、必ず1=(z-y)となります。
考察ハ'は、1=(z-y)のとき、がありません。
訂正します。
x^2×1=(z+y)×(z-y)が成り立つならば、
1=(z-y)のとき、必ずx^2=(z+y)となる。
112(5): 2019/12/22(日)21:04 ID:EfTr4oQ/(7/13) AAS
>>107
入っていますよ。
「0より大きい3つの数x,y,zについてx^2×1=(z+y)×(z-y)が成り立つとき」という条件をみたすx,y,zの組の中には
1=(z-y)を満たすものと1=(z-y)を満たさないものの2種類あります。
1=(z-y)を満たすものについては、必ず1=(z-y)となります。
1=(z-y)を満たさないものについては、1=(z-y)となりません。
1=(z-y)を満たさないものを満たさないものが含まれているのですから、「必ず1=(z-y)である」は間違いです。
「必ず…である。」という文は、そうでない例が1つでもあれば間違いであるので
左辺の右側と、右辺の右側は(必ず)等しい
も間違いです。
113(2): 2019/12/22(日)21:09 ID:HjBnJeEI(1/14) AAS
>>99 日高
> AB=BCならば、B=Cのとき、A=Bとなります。
> 証明。B=Cなので、AC=BCとなります。両辺は等しいので、A=Bとなります。
「両辺が等しいので」とあるけどなぜそのとき「A=B」なのか証明できますか?
114(2): 日高 2019/12/22(日)21:12 ID:JmVFhdX8(24/51) AAS
>108
>したがって、z^p×1=(x+y){x^(p-1)-x^(p-2)y+…+y^(p-1)}…(1)となる
>ここでは(右側)=(左側)を無視するの?
x,yが自然数の場合、1=x+yを満たさないからです。
115(2): 日高 2019/12/22(日)21:21 ID:JmVFhdX8(25/51) AAS
>109
>AB=CDのとき、成立する連立方程式は何組ある?
>>よくわかりません。
>マジかw
>1組は、A=CとB=D。全部で何組?
>これも答えて。
よくわかりません。
116(1): 2019/12/22(日)21:32 ID:zXV7IPoi(8/12) AAS
>114
↓こっちは無視?
(左辺) = z^p * 1 = z^(p-1) * z = ... = z * z^(p-1) = 1 * z^p
これらの場合、何故考えないの?
>115
連立方程式、知らない?
117: 日高 2019/12/22(日)21:32 ID:JmVFhdX8(26/51) AAS
>112
>「必ず1=(z-y)である」は間違いです。
そうですね。
z=17、y=8の場合、間違いとなります。
118: 日高 2019/12/22(日)21:33 ID:JmVFhdX8(27/51) AAS
>112
>「必ず1=(z-y)である」は間違いです。
そうですね。
z=17、y=8の場合、間違いとなります。
119: 日高 2019/12/22(日)21:33 ID:JmVFhdX8(28/51) AAS
>112
>「必ず1=(z-y)である」は間違いです。
そうですね。
z=17、y=8の場合、間違いとなります。
120: 2019/12/22(日)21:34 ID:zXV7IPoi(9/12) AAS
>114
↓こっちは無視?
(左辺) = z^p * 1 = z^(p-1) * z = ... = z * z^(p-1) = 1 * z^p
これらの場合、何故考えないの?
>115
連立方程式、知らない?
上下前次1-新書関写板覧索設栞歴
あと 882 レスあります
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.018s