[過去ログ] 現代数学の系譜 工学物理雑談 古典ガロア理論も読む77 (1002レス)
上下前次1-新
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
803(2): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/10/14(月)11:23 ID:w6tqRMw5(4/18) AAS
>>800
まあ、そうあせるなw(^^
小島寛之 が、
主な加筆は次の3点です。
ベクトル空間を導入したガロアの基本定理の完全証明
四則計算とべき根で解ける方程式,解けない方程式についても具体的に解説
補足章として,本書で扱った補助定理(アーベルの定理,コーシーの定理,デデキントの定理など)の証明を収録
これまでにないガロアの定理の完全解説本です。
というから
急ぎなら、下記よめ
省21
804(1): Mara Papiyas ◆y7fKJ8VsjM 2019/10/14(月)11:25 ID:llLaGKvq(5/12) AAS
>>803
ガロア理論理解してないことが露見して
あせってるのは馬鹿の貴様だけw
今まで理解できてないのに
これから泥縄で理解しようとか
貴様、数学なめとんのか?w
805(6): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/10/14(月)12:02 ID:w6tqRMw5(5/18) AAS
>>802
> 5次以上の代数方程式の根はよっぽど幸運でもない限り
いやね
5次の代数方程式のガロア群が、正20面体群になるんだけど(下記)
正20面体群がいまいち、すっきりしたイメージが湧かないので
(証明では、位数60の単純群までしか分解できないのは、長さ3と5の置換の組合わせで位数60になるというのだけれど・・)
下記の「正20面体と5次方程式 (シュプリンガー数学クラシックス)」も、買って読みましたよ
あとまあ、いろいろ調べたりして、なんとなく分かった気になったよ(^^
なお、5次の代数方程式が代数的に解けるのは、方程式のガロア群が
彌永先生の本や倉田本では、線形群と書いていたけど、位数20の群になるとき
省22
806(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/10/14(月)12:03 ID:w6tqRMw5(6/18) AAS
>>804
まあ、そうあせるな
あせっているのは、おまえだよ
どうも、ガロア理論が理解できていないのは、おまえじゃね?ww(^^
807: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/10/14(月)12:09 ID:w6tqRMw5(7/18) AAS
>>805
>詳しい歴史ならびに関係する7文字と11文字の対称性については正二十面体的対称性#関連する幾何学的性質(英語版)を見よ。
下記(”Klein's investigations continued with his discovery of order 7 and order 11 symmetries”)だね
外部リンク:en.wikipedia.org
Icosahedral symmetry
(抜粋)
A regular icosahedron has 60 rotational (or orientation-preserving) symmetries, and a symmetry order of 120 including transformations that combine a reflection and a rotation.
A regular dodecahedron has the same set of symmetries, since it is the dual of the icosahedron.
The set of orientation-preserving symmetries forms a group referred to as A5 (the alternating group on 5 letters), and the full symmetry group (including reflections) is the product A5 × Z2.
The latter group is also known as the Coxeter group H3, and is also represented by Coxeter notation, [5,3] and Coxeter diagram CDel node.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node.png.
省4
808: Mara Papiyas ◆y7fKJ8VsjM 2019/10/14(月)12:50 ID:llLaGKvq(6/12) AAS
>>805
>正20面体群がいまいち、すっきりしたイメージが湧かないので
馬鹿はイメージで分かると思ってる
考えずに見ようとするのは動物のやり方
>5次の代数方程式が代数的に解けるのは
>方程式のガロア群が、線形群と書いていたけど、
>位数20の群になるとき
見るだけで分かると思ってる馬鹿の貴様には
死んでも理解できねぇから諦めろ
>>806
省2
809(1): 2019/10/14(月)13:51 ID:keS+8+Fy(1) AAS
>>805
なお、5次の代数方程式が代数的に解けるのは、方程式のガロア群が
彌永先生の本や倉田本では、線形群と書いていたけど、位数20の群になるとき
え?こんなの成立しないよ?
Q上5次のGalois拡大あるけど?
810(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/10/14(月)15:57 ID:w6tqRMw5(8/18) AAS
メモ (数学と関係ない雑談な(^^ )
カーラジオから流れてきた カーペンターズ I Need To Be In Love (青春の輝き)
動画リンク[YouTube]
I Need To Be In Love (青春の輝き) / CARPENTERS
3,583,040 回視聴?2014/03/11
sagittarius1954?
touma hayami
3 年前
中学生の頃から、辛いときこの曲が元気をくれました。50を越えた今でも・・そりゃ辛いことはあって、助けてもらってます。カレンが生きていたら何歳だろうな・・。あと多分何回お世話になるんだろう。ありがとう。
外部リンク[cgi]:www2.nhk.or.jp
省24
811(3): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/10/14(月)16:13 ID:w6tqRMw5(9/18) AAS
>>809
ほいよ(^^;
彌永先生の本にもあるよ
(>>773より)
https(URLがNGなので、キーワードでググれ(^^ )
ガロアの第一論文を読む 渡部 一己 著(2018.1.28)
https(URLがNGなので、キーワードでググれ(^^ )
ガロア第一論文(galois-1.pdf)渡部 一己 著(2018.1.28)
(抜粋)
P130
省9
812: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/10/14(月)16:15 ID:w6tqRMw5(10/18) AAS
>>811
URLだけなら通るかな?(゜ロ゜;
外部リンク:sites.google.com
ガロアの第一論文を読む 渡部 一己 著(2018.1.28)
外部リンク[pdf]:sites.google.com
ガロア第一論文(galois-1.pdf)渡部 一己 著(2018.1.28)
813: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/10/14(月)16:16 ID:w6tqRMw5(11/18) AAS
よくわからんな、2ch(いま5ch)の規制はww(゜ロ゜;
814(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/10/14(月)16:25 ID:w6tqRMw5(12/18) AAS
>>810
青春の輝き
ドラマの主題歌になったと、ラジオで言っていたね
おれは、ドラマを見ないし、知らなかったけど
しかし、青春の輝きは、BGMとしてあちこちで聞くね
外部リンク:ja.wikipedia.org
青春の輝き
(抜粋)
「青春の輝き」(I Need to Be in Love)は、1976年にカーペンターズが発表した楽曲、及びシングル。『見つめあう恋』(A Kind of Hush)収録。作詞・作曲はリチャード・カーペンターとジョン・ベティス、アルバート・ハモンドによる。
解説
省13
815(2): Mara Papiyas ◆y7fKJ8VsjM 2019/10/14(月)16:51 ID:llLaGKvq(7/12) AAS
感傷に浸ってる耄碌爺に質問だw
1. Qに1のn乗根を添加した拡大体をEとする
このときのガロア群G(E/Q)は?
2. Kをn個の異なる1のn乗根を含む体とし
Lを、Kにaのn乗根の1つを追加した体とする
このときのガロア群G(L/K)は?
816: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/10/14(月)17:01 ID:w6tqRMw5(13/18) AAS
>>814
これも雑談だが
外部リンク:ja.wikipedia.org
未成年 (テレビドラマ)
(抜粋)
『未成年』(みせいねん)は、TBS系列の金曜ドラマ枠(毎週金曜日22:00 - 22:54、JST)で1995年10月13日から12月22日まで放送された日本のテレビドラマ。主演はいしだ壱成。
同年代の若者5人を中心に、青春の過程で起こる様々な苦悩と葛藤を生々しく描いたこの作品は、出演芸能人の出世作としても知られている。後年歌手として大ブレイクした浜崎あゆみの数少ない女優出演作のひとつでもある。全11回。
若者の青春群像劇として放映当時に大ブームを巻き起こし、平均視聴率は20.0%、第8回は最高視聴率23.2%(関東地区 ビデオリサーチ調べ)を記録した。
後年、SMAPのメンバーである中居正広は本作を「慎吾が出てたドラマの中で一番好き」と絶賛している[2]。
省1
817: Mara Papiyas ◆y7fKJ8VsjM 2019/10/14(月)17:03 ID:llLaGKvq(8/12) AAS
感傷に浸ってる耄碌爺に質問だw
1. Qに1のn乗根を添加した拡大体をEとする
このときのガロア群G(E/Q)は?
2. Kをn個の異なる1のn乗根を含む体とし
Lを、Kにaのn乗根の1つを追加した体とする
このときのガロア群G(L/K)は?
818(5): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/10/14(月)17:41 ID:w6tqRMw5(14/18) AAS
>>815
めんどくさいやつだな
そうあせるな(^^
Q1. Qに1のn乗根を添加した拡大体をEとする
このときのガロア群G(E/Q)は?
A1. 面倒なのでn=p(素数)とするよ
(こう仮定してもガロア理論には十分だから)
位数p-1の巡回群
因みに、1のn乗根 ωp=n√1 (1の原始根)として
Eは、Qにωpを添加した拡大体になる(ガウスのDAに書いてあるらしい)
省15
819(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/10/14(月)17:57 ID:w6tqRMw5(15/18) AAS
>>818
ガウス、アーベル、ガロアについては、下記の高瀬正仁先生ご参照
http(URLがNGなので、キーワードでググれ(^^ )
日々のつれづれ
(ガウス32)アーベル方程式とガロアの第一論文 Author:オイラー研究所の所長 高瀬正仁 2008-04-26
(抜粋)
代数的可解性を左右する根源的な要因は「諸根の相互依存関係」にあります。この認識はガロアもまた共有し、代数方程式の代数的可解性をテーマにした第一論文
「方程式が冪根を用いて解けるための条件について」
において、
《冪根を用いて解ける方程式のどれもが満たし、しかも逆に、その可解性を保証するひとつの一般条件》
省4
820: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/10/14(月)17:57 ID:w6tqRMw5(16/18) AAS
>>819
つづき
アーベルはガウスの理論の根幹をなす数学的思想の泉から直接、アーベル方程式の概念を取り出しましたが、ガロアはガロアでガウスの理論の「証明の構造」を学び、ガウスの理論をその雛形と見ることを可能にする大きな理論を構想したのでした。
ガロアの第一論文はガロアが書いた一番はじめの論文というわけではありませんが、「第一論文」と呼ぶ習わしになっています。
1832年5月30日早朝の決闘の前夜、友人オーギュスト・シュヴァリエに宛てた有名な遺書において、ガロアは冒頭で「(これまでの研究を元手にして)三篇の論文を作成することができると思う」と述べ、続いて各論文の素描を試みました。
「第一論文はもう書いた」と言われているが、これは上記の代数方程式論に関する論文を指しています。
ガロア理論により、素次数既約方程式の代数的可解性の判定条件が手に入ります。
《通約可能な因子をもたない(註。「既約」という意味です)素次数の方程式が冪根を用いて解けるためには、そのすべての根が、それらのうちのどれかふたつの根の有理関数になっていなければならず、しかもそれで十分である。》
ガウスに端を発し、アーベルが洞察した代数的可解性の基本原理は、ガロアに継承されてひとつの完結した姿形を獲得したのでした。
ガロアが言及しているもうひとつの応用例は、楕円関数論におけるアーベルの予想の証明である。アーベルは論文「楕円関数研究」において、モジュラー方程式は一般に代数的には解けないであろうと予想しましたが、ガロアはこれを受けて次のように述べています。
省4
821(1): Mara Papiyas ◆y7fKJ8VsjM 2019/10/14(月)18:01 ID:llLaGKvq(9/12) AAS
>>818
ん、なんかおかしなこといってるね
>面倒なのでn=p(素数)とするよ
そんな仮定するほうが面倒だろw
>位数p-1の巡回群
巡回群だといいたいためにpの条件を持ち出したんなら馬鹿
省3
822(2): 2019/10/14(月)18:17 ID:yDLeEzQX(1/4) AAS
>>811
cos(2π/11)のガロア群は位数5の巡回群だけど?
上下前次1-新書関写板覧索設栞歴
あと 180 レスあります
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.021s