[過去ログ] 現代数学の系譜 工学物理雑談 古典ガロア理論も読む77 (1002レス)
上下前次1-新
抽出解除 レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
328(6): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/09/19(木)00:48 ID:MSw7Rbq1(1/14) AAS
>>306
(引用開始)
その場合、個々の自然数を要素とすることはしませんよ
同値類から代表元をとって
{0,1}という別集合を考える
というのはありますがね
(引用終り)
コケコッコー(おれ)もレベル低いけど、おサルもほんと低レベルだな〜w
論破しますw
(引用開始)
省25
329(4): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/09/19(木)00:49 ID:MSw7Rbq1(2/14) AAS
>>328
つづき
(参考)
外部リンク:math.shinshu-u.ac.jp
代数入門 花木章秀 信州大学理学部数学科
外部リンク[pdf]:math.shinshu-u.ac.jp
代数学入門
花木 章秀
2013 年前期
(2013/04/01)
省19
335(7): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/09/19(木)07:40 ID:MSw7Rbq1(4/14) AAS
(引用開始)
>”同値類全体の集合は
>Z/nZ = {0 + nZ, 1 + nZ, ・ ・ ・ , (n - 1) + nZ}”
>Z/nZは、明らかに有限集合ではない
完全な誤りw
Z/nZは、明らかに有限集合
(引用終り)
コケコッコー(おれ)もレベル低いけど、おサルもほんと低レベルだな〜w
論破しますw
下記、大学数学の”「同一視する」という考え方”、分かりますか〜w(^^;
省24
338(4): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/09/19(木)07:52 ID:MSw7Rbq1(7/14) AAS
>>337
つづき
2)さて、下記のように考えてみよう
(参考)
外部リンク:www.sci.shizuoka.ac.jp 数学基礎論サマースクール 選択公理と連続体仮説
外部リンク[pdf]:www.sci.shizuoka.ac.jp
公理的集合論の基礎 酒井 拓史 神戸大学 2019 年 数学基礎論サマースクール
(抜粋)
P3
公理的集合論の枠組み
省28
371(3): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/09/20(金)08:13 ID:ihE7M+Qz(5/9) AAS
>>366
>Z/nZの要素は0 + nZ, 1 + nZ, ・ ・ ・ , (n - 1) + nZのn個だけ
>そこからZへの全射は逆立ちしても不可能wwwwwww
(>>328より)
下記信州大 代数入門 (花木章秀先生)より
”同値類全体の集合は
Z/nZ = {0 + nZ, 1 + nZ, ・ ・ ・ , (n - 1) + nZ
で
0 + nZ={・・,-2n,-n,0,n,2n,・・}
1 + nZ={・・,-2n+1,-n+1,1,n+1,2n+1,3n,・・}
省24
376(4): 2019/09/20(金)19:00 ID:DPgtgKl0(13/13) AAS
馬鹿に問題だ
Z/2Z={{0,2,4,…},{1,3,5,…}}とする
1) Z/2Zの元を全て列挙せよ
2) Z/2Zの部分集合を全て列挙せよ
378(3): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/09/20(金)23:20 ID:ihE7M+Qz(7/9) AAS
>>376
コケコッコー(おれ)もレベル低いけど、おサルもほんと低レベルだな〜w(^^
必死の論点そらし、ご苦労さん
まあ、下記でもご参照
「表記と慣例」
「同値類を表すのに代表元に施す角括弧をしばしば省略して、代表元とそれが属する合同類とを同じ文字で表す」
「合同類を表す符牒が無数にあるという不定性を除くために、各合同類から「標準的」(canonical) な代表元を選んで、それと合同類とを同一視することもよく行われる」
そのうえでの、「Z/2Z = {0, 1} 」ってですよ(^^;
同一視は、上記の”hiroyukikojima” ”「同じと見なす」ことの素晴らしさと難しさ”
(参考)
省19
385(3): 2019/09/21(土)06:05 ID:s+bHRCsH(2/17) AAS
>>378
>必死の論点そらし、ご苦労さん
必死の回答拒否、ミットモナイw
>>376の質問に答えられない時点で
テツガクシャ1は要素と部分集合が理解できてない
と白状したわけだw
>Z/2Z={{0,2,4,…},{1,3,5,…}}とする
>1) Z/2Zの元を全て列挙せよ
答えは{0,2,4,…}と{1,3,5,…}の2つ
0,1,2,3,4,5,…とか答えるテツガクシャ1は
省7
390(4): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/09/21(土)07:34 ID:RSxZzkRi(1/13) AAS
>>378 補足
コケコッコー(おれ)もレベル低いけど、おサルもほんと低レベルだな〜w(^^
必死の論点そらし、ご苦労さん
もう一度纏めます(^^
1)ヒトは、「同一視」と「同一」の区別ができる。おサルはできない。それに尽きるのかも
2)整数Zに合同(≡又はmod)を定義して、あるnによる同値類とその集合Z/nZを考える
3)Z/nZ = {0 + nZ, 1 + nZ, ・ ・ ・ , (n - 1) + nZ}である
4)各0 + nZ, 1 + nZ, ・ ・ ・ , (n - 1) + nZたちは、無限集合である
5)Z/nZは、剰余類環の表記と慣例により、各合同類から「標準的」(canonical) な代表元を選んで、
Z/nZ = {0, 1, ・ ・ ・ , (n - 1)} と簡素に表記される
省18
418(3): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/09/22(日)07:07 ID:dCfcIyTY(2/20) AAS
>>417
つづき
ここで、この演算が「剰余類に対する演算」としてきちんと定義されていることは、
結果(和や積)として求まる剰余類が代表元の取り方に依らないこと、
すなわち、a1, b1, a2, b2 を [a1] = [b1] かつ [a2] = [b2] を満たす任意の整数とすれば、
[a1+a2]=[b1+b2], [a1 x a2]=[b1 x b2]
が成り立つことから確認できる。
3 を法とする剰余類環
法 3 に関する剰余類は
・0 :=[0]={・・・ ,-6,-3;0,3,6,9,12,・・・ }: 3 で割り切れるもの
省17
421(3): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/09/22(日)07:37 ID:dCfcIyTY(5/20) AAS
>>418
(引用開始)
したがって、Z/4Z \ 0 は乗法について閉じていない。
このことから、代数系 (Z/4Z, +, ×) は(4 を法とする剰余類環として)可換環を成すのみで、零因子が乗法逆元を持たないため体にはならない(位数 4 の有限体 F4 は存在するにも関わらず、である)。
(引用終り)
位数 4 の有限体 F4について(^^
「要は1の原始3乗根を添加した体がF4である」か
複素数まで考えないといけないんだ(^^;
外部リンク:br-h2gk.hatenablog.com/entry/finite_field_02
数学とその他の日々
省24
428(3): 2019/09/22(日)08:13 ID:adVjb7k7(3/28) AAS
>>420
>ここで、↓の上の集合で、外側の{}を外してみよう
>{・・,-2n,-n,0,n,2n,・・}, {・・,-2n+1,-n+1,1,n+1,2n+1,3n,・・}, ・ ・ ・ ,{・・,-n-1,-1,n-1,2n-1,3n-1,・・}
> ↓全射
>・・,-2n,-n,0,n,2n,・・ , ・・,-2n+1,-n+1,1,n+1,2n+1,3n,・・ , ・ ・ ・ , ・・,-n-1,-1,n-1,2n-1,3n-1,・・
>要するに、
>↓の上側は、Zの部分集合で、0 + nZ, 1 + nZ, ・ ・ ・ , (n - 1) + nZたちになる
>↓の下側は、Zの元たち
>つまり、↓の上側は、Zの部分集合の集まりで、そこに属する元から、Zの元に対する自然な対応(写像)が存在する
写像は存在しないw
省14
429(5): 2019/09/22(日)08:13 ID:CY/F9h+Q(3/12) AAS
サル石よ、これを解いてみ(笑
以前このスレでやった問題だから解けるだろう(笑
100枚の宝くじを売り出すとし、
そのうち1枚だけが当たりくじだとする。
但し、そのうち99枚をAの売り場で売り出すとし、
残りの1枚をBの売り場で売り出すとする。
1 Aの売り場に宝くじが入っている確率と、
Bの売り場に宝くじが入っている確率は、それぞれいくらか。
2 AとBのどちらで買った方が当たる確率が高いか。
ちゃんと理由を述べて解いてみ(笑
471(10): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/09/22(日)18:12 ID:dCfcIyTY(10/20) AAS
>>465-470
ほんと、コケコッコー(おれ)もレベル低いけど、おサルも低レベルだな〜w(^^
(つーか、いまふと思ったが、彼のサイコパス性格(屁理屈を使ってでも相手に反論しないと気が済まない)が出ているなー(>>2ご参照)。すげー、低レベルの屁理屈反論w(^^; )
笑える
じゃw
(>>411より)
整数環Zに合同(≡又はmod)を定義して、あるnによる同値類でn個の同値類が出来る
単に、Zを均等にn個に分けただけ
各0 + nZ, 1 + nZ, ・ ・ ・ , (n - 1) + nZたちは、無限集合だ
そのn個を集めて、集合を作る
省20
494(5): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/09/22(日)20:04 ID:dCfcIyTY(14/20) AAS
>>491
(引用開始)
ですから心配ご無用ですって
スレ主はもう数学板から駆除されましたからw
まさかこの期に及んで数学板に居座り続けるなんて図々しいマネはできないでしょうw
いくら恥知らずなスレ主でもw
(引用終り)
<設問は>
(>>471より抜粋)
整数環Zに合同(≡又はmod)を定義して、あるnによる同値類でn個の同値類が出来る
省25
499(3): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/09/22(日)21:31 ID:dCfcIyTY(16/20) AAS
>>494 補足
整数の集合Z = {・・・,-4,-3,-2,-1,0,1,2,3,4・・・}
偶数の集合2Z = {・・・,-4,-2,0,2,4・・・}
奇数の集合1+2Z = {・・・,-3,-1,1,3,・・・}
明らかに
Z =2Z ∪ 1+2Z
Φ =2Z ∩ 1+2Z
ここで、偶数の集合2Zと、奇数の集合1+2Zとを元に持つ集合Z/2Zを考える
Z/2Z ={2Z, 1+2Z}
確かに、Z/2Zは集合としての元は二つ
省17
506(3): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/09/22(日)23:19 ID:dCfcIyTY(19/20) AAS
>>499 補足
”「同じと見なす」という数学固有のテクニック”
”「同じと見なす」ということを、数学の専門の言葉では「同一視」という”(小島寛之)
整数の集合Z = {・・・,-4,-3,-2,-1,0,1,2,3,4・・・}
偶数の集合2Z = {・・・,-4,-2,0,2,4・・・}
奇数の集合1+2Z = {・・・,-3,-1,1,3,・・・}
明らかに
Z =2Z ∪ 1+2Z
Φ =2Z ∩ 1+2Z
無限集合Zを、2Zで類別して
省12
518(3): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/09/23(月)10:17 ID:Pa2IotH6(6/8) AAS
>>506 補足
<Z→Z/nZの単射>
1)簡単に、Z→Z/2Z (偶数,奇数で考える)
(再録(主に記号の定義))
整数の集合Z = {・・・,-4,-3,-2,-1,0,1,2,3,4・・・}
偶数の集合2Z = {・・・,-4,-2,0,2,4・・・}
奇数の集合1+2Z = {・・・,-3,-1,1,3,・・・}
2)さて、単射が存在する
{・・・,-4,-2,0,2,4・・・}{・・・,-3,-1,1,3,・・・}
↓fe(単射) ↓fo(単射)
省34
525(3): 2019/09/23(月)20:31 ID:xrE7eXYo(2/15) AAS
おっと、本題を忘れてた!これだよ、これ!
>>471
>「Z/nZは有限集合」と書いてある文献探して、提示してくれ
>そうしたら、スレを閉じて、すっぱりと、おれは5CH数学板から去るよ(^^;
>おっと、「Z/nZは有限集合」と書いてある”そのものずばり”だよ
外部リンク[pdf]:www.math.s.chiba-u.ac.jp
p12
「Z/nZ は離散位相の入った有限集合なので,」
はい、スレ閉じて、すっぱりと5CH数学板から退去してください_(_ _)_
527(4): 2019/09/23(月)21:25 ID:hzAaw1bL(1/6) AAS
>>525
どうもスレ主です
良い文献だ
が、 それ、おれが、最初から書いている元の数nってこと
つまり、環として見れば、要素n個は、すでに宣言している通り
ほかの文献ないのか?
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.088s