[過去ログ] 現代数学の系譜 工学物理雑談 古典ガロア理論も読む77 (1002レス)
上下前次1-新
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
127(2): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/09/14(土)00:12 ID:QdZ5TU5n(1/19) AAS
>>124 追加
過去スレで、矢田部俊介先生の「公理論的集合論(情報科学特別講義 III)」も取り上げた記憶があるね〜(^^
おもしろいね〜w
外部リンク:researchmap.jp
矢田部俊介
外部リンク:researchmap.jp
資料公開
タイトル 公理論的集合論
カテゴリ 講義資料
概要 お茶の水女子大学2012年度集中講義「情報科学特別講義III」(2013年2月18日?22日)授業要旨
省21
128(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/09/14(土)00:14 ID:QdZ5TU5n(2/19) AAS
>>125-126
フォン・ノイマン宇宙Vの中に、"推移的"ではない、つまり、反例があるとね
笑えるわw(^^;
129(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/09/14(土)00:32 ID:QdZ5TU5n(3/19) AAS
>>127 追加
外部リンク:researchmap.jp
公理論的集合論(情報科学特別講義 III)お茶の水女子大学2012年度集中講義「情報科学特別講義III」(2013年2月18日?22日)授業要旨
矢田部俊介 京都大学文学部大学院文学研究科
2013 年 2 月 17 日
(抜粋)
P4
2.2.1 順序数とブラリ・フォルティのパラドックス
定義 2.8 (順序数) x が順序数であるとは、x 上で ∈ は以下の条件を満たす
? 推移的である:(∀y, z)[z ∈ y ∧ y ∈ x → z ∈ x],
省6
130(1): 2019/09/14(土)07:22 ID:VYIPOabR(1/30) AAS
>>128
笑われてるのはニワトリのほう
反例 {{{}}}
証明 {}∈{{}} {{}}∈{{{}}} しかし {}∈{{{}}}でない
したがって {{}}⊂{{{}}}
矢田部氏はツイッターやってるから
直接聞いてみ?
Twitterリンク:ytb_at_twt
「推移的でない集合なんてないですよね?」って
速攻で否定されるからw
省1
131: 2019/09/14(土)07:27 ID:VYIPOabR(2/30) AAS
>>129
ニワトリ 全然わかってないね
順序数は存在するよ
貴様は「順序数でない集合は存在しない」とわめきちらしてるから
実にわかりやすい反例を示してやった
なんならツイッターで聞いてみろってw
くるる氏とか集合論の研究者だから
Twitterリンク:kururu_goedel
Twitterリンク:5chan_nel (5ch newer account)
132: 2019/09/14(土)07:42 ID:VYIPOabR(3/30) AAS
>>30
>”元x も一つの集合だと考える”とすると、x ∈ y → x ⊂ y だろうと
>しかし、ZFC公理系から導けると思って、トライしたが、残念ながらできなかった(^^;
>(そういう文典も探したが、見つけられなかった)
ZFCから導けるわけないw
反例{{{}}}が存在するからwww
>しかし、我々の通常接する素朴集合論に近い議論では、
>”x ∈ y → x ⊂ y ”を認めた方が良いという結論に至った
馬鹿丸出し
素朴集合論でも{{{}}}は集合
省3
133: 2019/09/14(土)07:44 ID:VYIPOabR(4/30) AAS
ニワトリ、集合論研究者にツイッターで尋ねて爆死の図
ニワトリ「ZFCで”x ∈ y → x ⊂ y”は証明できますよね?」
研究者 「アホか!反例があるわい!」
134: 2019/09/14(土)08:29 ID:igft4myA(1/5) AAS
サルは5ちゃんやめて近所の中学生に教えてもらえ
これ以上バカ晒すな
135(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/09/14(土)11:27 ID:QdZ5TU5n(4/19) AAS
>>130
(引用開始)
反例 {{{}}}
証明 {}∈{{}} {{}}∈{{{}}} しかし {}∈{{{}}}でない
したがって {{}}⊂{{{}}}
(引用終り)
そこの最後は、”¬({{}}⊂{{{}}})”の間違いだよねw
(あなたの>>126より)
"{{{}}}は推移的でないから
{{}}∈{{{}}}だが、¬({{}}⊂{{{}}})である"
省14
136(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/09/14(土)11:27 ID:QdZ5TU5n(5/19) AAS
>>135
つづき
外部リンク:googology.wikia.org
階層内階層基数 | 巨大数研究 Wiki | FANDOM powered by Wikia
(抜粋)
フォン・ノイマン宇宙
フォン・ノイマン宇宙とはZFCで扱うことが出来る全ての集合を漸増的に定義する真クラスである。
それは集合ではないが、「全ての集合の集合」とみなすことができる。
それは累積階層という、次のように定まる超限列により定義される:
外部リンク:ja.wikipedia.org
省13
137(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/09/14(土)11:28 ID:QdZ5TU5n(6/19) AAS
>>136
つづき
外部リンク:ja.wikipedia.org
公理的集合論
(抜粋)
集合の公理系
現在一般的に使われている集合の公理系は以下の ZFC である。
・対の公理 任意の要素 x, y に対して、x と y のみを要素とする集合が存在する:
これを{x,y}で表す。
・和集合の公理 任意の集合 X に対して、X の要素の要素全体からなる集合が存在する:
省16
138(2): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/09/14(土)11:28 ID:QdZ5TU5n(7/19) AAS
>>137
つづき
以下、余談だがご参考まで(^^;
(>>67)
外部リンク:ja.wikipedia.org
フォン・ノイマン宇宙
(抜粋)
定義
この累積的階層は順序数のクラスによって添え字付けられた集合Vαの集まりであり、特に、Vαは階数α未満の集合全てによる集合である。ゆえに各順序数 α に対して集合Vαが超限帰納法によって以下のように定義できる:
・V0は空集合, {}とする。
省18
139(2): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/09/14(土)11:29 ID:QdZ5TU5n(8/19) AAS
>>138
つづき
(>>92-93)
外部リンク:lemniscus.hatenablog.com/entry/20120616/1339838683#sec6-7
再帰の反復blog
2012-06-16
反復的集合観と公理的集合論
(抜粋)
整礎原理
自分自身を含んでいたり包含関係が循環することがないため、「∈」について順序関係が成立することになる。
省14
140(4): 2019/09/14(土)11:32 ID:VYIPOabR(5/30) AAS
フォン・ノイマン宇宙
集合Xに対してP(X)でXのべき集合を表す
V0={}
V1=P(V0)={{}}
V2=P(V1)={{},{{}}}
V3=P(V2)={{},{{}},{{{}}},{{},{{}}}}
推移的でない集合{{{}}}は、V3で現れる
141: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/09/14(土)11:33 ID:QdZ5TU5n(9/19) AAS
>>139 タイポ訂正
またこの空集合を元にして、{Φ},{{Φ,{{{Φ},{{{{Φ,…とか{Φ,{Φ,{Φ,{Φ},{{Φ},{Φ,{Φ},{{Φ,{{{Φ,…といった集合も存在していてほしい。
↓
またこの空集合を元にして、{Φ},{{Φ}},{{{Φ}}},{{{{Φ}}}},…とか{Φ,{Φ}},{Φ,{Φ},{{Φ}}},{Φ,{Φ},{{Φ}},{{{Φ}}}},…といった集合も存在していてほしい。
(全部置換で ”}}→消し” の操作をやったら、影響が思わぬ所に出た(^^; )
142(1): 2019/09/14(土)11:36 ID:VYIPOabR(6/30) AAS
>>138
>Vの要素は全て整礎集合
「整礎集合は全て推移的集合」と誤解する馬鹿www
143(1): 2019/09/14(土)11:39 ID:VYIPOabR(7/30) AAS
>>140
Vαはそれ自身は推移的だが、その要素の集合は推移的でない
(Vαは順序数ではないから)
推移的でない集合{{{}}}は、V3で現れる
144: 2019/09/14(土)11:40 ID:VYIPOabR(8/30) AAS
ニワトリ、V3で敗北www
動画リンク[YouTube]
145(3): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/09/14(土)11:53 ID:QdZ5TU5n(10/19) AAS
>>140
>推移的でない集合{{{}}}は、V3で現れる
それおサルの集合論でしょ?w(^^;
Φ∈{}∈{{}}∈{{{}}}
だよね
だから、∈順序の推移律より、{}∈{{{}}が成立して、{{}}の要素{}が{{{}}の要素でもあるので、
「 {{}}⊂{{{}}}成立」!!w
よって、集合{{{}}}は推移的です
あなたの主張は、>>139 の 「再帰の反復blog 2012-06-16 反復的集合観と公理的集合論」の
「整礎原理」を否定しているよな!!w(^^;
省15
146(2): 2019/09/14(土)12:15 ID:VYIPOabR(9/30) AAS
AA省
上下前次1-新書関写板覧索設栞歴
あと 856 レスあります
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.023s