[過去ログ] 現代数学の系譜 工学物理雑談 古典ガロア理論も読む77 (1002レス)
1-

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
903
(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/10/17(木)00:12 ID:khSgay+Z(2/9) AAS
>>901 追加

確か、元吉文男さん、参考文献に、エム・ポストニコフをあげていたね(^^
外部リンク[pdf]:www.kurims.kyoto-u.ac.jp
[PDF]5 次方程式の可解性の高速判定法 - 元吉文男 著 - ?1993 RIMS, Kyoto University

外部リンク:peng225.hate(URLがNGなので、キーワードでググれ(^^ )
ペンギンは空を飛ぶ
2018-03-07
5次方程式の解を巡る旅 ?5次方程式の可解性判定編?
(抜粋)
Galois理論
省3
904
(2): 2019/10/17(木)00:29 ID:rXxqe236(1/8) AAS
>この「S_5の位数20の部分群 (12345)x(2354)」は
> >>805に書いておいたが、べき根で可解な既約5次方程式での最大の群だよ
>この5次方程式は、二項方程式ではない

x^3-2=0 という方程式のQ上のガロア群はS_3だが
1の3乗根を添加した体上ではC_3に縮小する。
一般3次方程式のガロア群はS_3だが
1の3乗根を添加してもS_3のまま。
しかし、べき根解法には1の3乗根は必要。
この話の類似が5次の場合にもあるんじゃないかな。
つまり、位数20のガロア群をもつ5次方程式は一般的には二項方程式ではないが
省1
905
(1): 2019/10/17(木)00:31 ID:rXxqe236(2/8) AAS
失礼。
Mara Papiyas氏が言うように
906: Mara Papiyas ◆y7fKJ8VsjM 2019/10/17(木)05:27 ID:448PbhX4(1/12) AAS
>>900
>??

貴様は肝心なところを読んでない
自己同型! なぜ読まない?

貴様の引用したHPにもチャンと
同型写像について書かれてる
なぜ引用しない? 馬鹿かw
907: Mara Papiyas ◆y7fKJ8VsjM 2019/10/17(木)05:31 ID:448PbhX4(2/12) AAS
>>904
1の5乗根を追加した体を基礎体としても
ガロア群がF_20となる場合がいかなるものか
についてはハイレベル数学人に任せるw

私の目的はあくまで馬鹿のローレベルな間違いを指摘することにあるw
908: Mara Papiyas ◆y7fKJ8VsjM 2019/10/17(木)05:35 ID:448PbhX4(3/12) AAS
馬鹿はウマに食わせるほど数学書を買っても
ロクに読みもせず、読んだとしても
結果を覚えるだけで証明の論理を追わないから
いつまでたっても数学が理解できない

悪いことは云わない 数学は諦めろ
数学書はみな売っちまえ
貴様がやるべきことは断捨離だw
909
(2): Mara Papiyas ◆y7fKJ8VsjM 2019/10/17(木)06:14 ID:448PbhX4(4/12) AAS
円分拡大の自己同型

原始5乗根をζで表す

同型写像として^2をとる

ζ、ζ^2、ζ^3、ζ^4
↓^2
ζ^2、ζ^4、ζ^6=ζ、ζ^8=ζ^3
↓^2
ζ^4、ζ^3、ζ^2、ζ
↓^2
ζ^3、ζ、ζ^4、ζ^2
省19
910: Mara Papiyas ◆y7fKJ8VsjM 2019/10/17(木)06:21 ID:448PbhX4(5/12) AAS
些細なことですが

>>905
氏はつけなくてもいいよ

例えば数学者について述べるとき、いちいち氏はつけないが
それを無礼だと咎める人はまあいない

私は別に数学者ではないが、名前に関しては
数学の慣習に沿って語っていただいて全然かまわない
911
(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/10/17(木)07:09 ID:khSgay+Z(3/9) AAS
>>904
ID:rXxqe236さん、どうも。スレ主です。
レスありがとう(^^

(引用開始)
>この「S_5の位数20の部分群 (12345)x(2354)」は
> >>805に書いておいたが、べき根で可解な既約5次方程式での最大の群だよ
>この5次方程式は、二項方程式ではない

x^3-2=0 という方程式のQ上のガロア群はS_3だが
1の3乗根を添加した体上ではC_3に縮小する。
一般3次方程式のガロア群はS_3だが
省25
912
(2): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/10/17(木)07:37 ID:khSgay+Z(4/9) AAS
>>909
ぱち ぱち ぱち、拍手!
ご苦労さんw(^^;

さて、じゃおれも
(>>858より 下記”1のn乗根 (Joh著)”から)
「Q 上のベクトル空間と見た場合には ζ , ζ^2 ,..., ζ^n-1 が基底を張ることになります.
あれ, 1 は基底に無いのでしょうか?要りません.」
の話において

「1+ζ + ...+ζ ^n-1=0 がなりたつため, ζ , ζ^2 ,..., ζ^n-1 と 1 は独立ではないのです.」
は、ベクトル空間の基底で”1は不要”の話は、”1”みならず、任意のζ^m (1<=m<=n-1)の1つを基底から外すことが可能
省20
913
(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/10/17(木)07:47 ID:khSgay+Z(5/9) AAS
>>912
> 1+ζ + ...+ζ ^n-1=0

これは、二項方程式 x^n - 1=0
で、
下記の根と係数の関係を適用すると
上記の方程式のn-1次の項が0であることから
導かれるね

外部リンク:ja.wikipedia.org
根と係数の関係
(抜粋)
省10
914
(3): 2019/10/17(木)08:05 ID:rXxqe236(3/8) AAS
>>912
ご参考にされてるHPは混乱してるのか、間違ったことも混じって書いてありますね。
定理として書いてある
「ζ=exp(2πi/n)の最小多項式は{1,ζ,ζ^2,...,ζ^{n-1}}の全てを解として持ちます.」
は明確に誤り。最小多項式の次数はφ(n)次なので、φ(n)個しか根を持ちえません。
(最小多項式)≠x^n-1 です。
あと、ζ,ζ^2,...,ζ^{n-1}が基底をなすように書いてありますが、これも素数でないnに対しては誤り。
Q上のベクトル空間としての次元もφ(n)なので、基底の個数もφ(n)個です。
915
(3): 2019/10/17(木)08:11 ID:rXxqe236(4/8) AAS
Mara Papiyasさんも勉強しながら書かれてる感じですが、スレ主さんとは違って
自分の頭を通して書いているなというのが分かります。
「アーベル群とアーベル群の直積はアーベル群にしかならないだろう」
とか、数学徒であれば誰でも気づくツッコミも入れてきます。
まえもそうでしたが、スレ主さんにはどうも半直積の概念がないように思えます。
916
(2): 2019/10/17(木)08:25 ID:rXxqe236(5/8) AAS
何年間もガロア理論を勉強されてきて、ネット上のどこにどんな文書があったか
どの本にどんな項目があったかとかの知識はありますが
まとまった理論が頭の中に構築されている感じがしません。失礼ながら。
HPなどは間違った記述も多いので、やはり自分の頭を通して
徹底的に考えなければ、正誤の判断は付かないし、身にも付かないものだと思います。
917
(1): 2019/10/17(木)08:41 ID:rXxqe236(6/8) AAS
>>913
1+ζ + ...+ζ ^n-1=0 の証明
S=1+ζ + ...+ζ ^n-1にζを掛けると巡回的に項がずれるが和としては不変であることが観察できる。
すなわち、S=ζS.
 (1-ζ)S=0 で、1-ζ≠0 より S=0.
918
(2): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/10/17(木)10:15 ID:CX/otP+s(1/9) AAS
>>903 追加

下記元吉文男で、
既約な二項方程式x^5-a=0のガロア群は、C_{5} 巡回群 (位数 5)です
B_{5}'メタ巡回群 (位数 20)では、ありません
外部リンク[pdf]:www.kurims.kyoto-u.ac.jp
[PDF]5 次方程式の可解性の高速判定法 - 元吉文男 著 - 1993 RIMS, Kyoto University
(抜粋)
有理数係数の 5 次の既約多項式が可解であるかどうかを、 (大部分の場合に) 有理数演
算だけで高速に判定する方法を紹介する。
1. ガロア群の計算原理
省10
919
(4): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/10/17(木)10:58 ID:CX/otP+s(2/9) AAS
>>914
ID:rXxqe236さん、どうもスレ主です。
レスありがとう

(引用開始)
ご参考にされてるHPは混乱してるのか、間違ったことも混じって書いてありますね。
定理として書いてある
「ζ=exp(2πi/n)の最小多項式は{1,ζ,ζ^2,...,ζ^{n-1}}の全てを解として持ちます.」
は明確に誤り。最小多項式の次数はφ(n)次なので、φ(n)個しか根を持ちえません。
(最小多項式)≠x^n-1 です。
あと、ζ,ζ^2,...,ζ^{n-1}が基底をなすように書いてありますが、これも素数でないnに対しては誤り。
省26
920: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/10/17(木)11:01 ID:CX/otP+s(3/9) AAS
>>915
ID:rXxqe236さん、どうもスレ主です。
レスありがとう

>「アーベル群とアーベル群の直積はアーベル群にしかならないだろう」
>とか、数学徒であれば誰でも気づくツッコミも入れてきます。
>まえもそうでしたが、スレ主さんにはどうも半直積の概念がないように思えます。

なるほど
ちょっと考えてみます(^^;
921: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/10/17(木)11:03 ID:CX/otP+s(4/9) AAS
>>916
>HPなどは間違った記述も多いので、やはり自分の頭を通して

 >>919をどうぞ
922: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/10/17(木)11:08 ID:CX/otP+s(5/9) AAS
>>917
ぱち ぱち ぱち、拍手(^^
その証明も、昔どこかで見た記憶が
どこだったか、思い出せませんが
なお、別証明ですね(>>919 高校数学の美しい物語 ご参照)
1-
あと 80 レスあります
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.033s