[過去ログ] 現代数学の系譜 カントル 超限集合論2 (1002レス)
前次1-
抽出解除 必死チェッカー(本家) (べ) 自ID レス栞 あぼーん

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
467: 2020/03/12(木)19:43 ID:+sBkJatU(1/6)調 AAS
>>444
>時枝を1列で考えます。

時枝記事の方法は少なくとも2列は必要

>可算無限長L(=∞)の列に対し、代表番号dは有限

そもそも代表番号dは有限だけど

1列で考えたから有限になる、というわけではない
468: 2020/03/12(木)19:44 ID:+sBkJatU(2/6)調 AAS
>>444
>>有限dを使った数当ては、出来ないってことです
>>445
>それを数学的に説明したのが、下記のDR Pruss氏の
>”conglomerability assumption”による説明です
(中略)
>”自然数の集合Nから、ランダムに任意の元dを選ぶ”という
>ランダムネスの定義が、本当は出来ずに、手品のタネになっている
>決定番号dが、如何にも我々の知っている有限の数の範囲になる
>が如くの錯覚をさせている(本当はここ極限です)
> それが、手品のタネになっている
> 有限の世界なら、d1とd2の大小比較も明確だ
> しかし、無限大の世界では、d1とd2の大小比較は簡単に言えない
> それを、DR Pruss氏は、mathoverflowで述べているのです

Dr.Prussは、
「dが有限でない」(つまりdが自然数にならない)
とは一言も云ってないけど

云えるわけないよ
それは尻尾の同値関係を否定する発言だから

dは自然数
したがって、d1とd2の大小比較は常に可能
(注:自然数の超準モデルを考えても同じ)
469: 2020/03/12(木)19:44 ID:+sBkJatU(3/6)調 AAS
Dr.Prussが”conglomerability assumption”でいってるのは
端的にいえぱ、”conglomerability”として要請する
以下の公式が常に成り立つとはいえない、という指摘

P(A)=?P(A|B)P(B)

Aを箱の中身と代表元が一致する状況とする
時枝の方法は、Bを具体的な数列100列が選ばれた場合としている
セタの反論は、Bを具体的な箱が選ばれた場合としている

前者の場合ではP(A|B)>=1-1/100である
(選べる100箱のうち、不一致の箱は高々1つ)
後者の場合ではP(A|B)は0である
(どの箱に着目したとしても、
 ほとんどすべての列で、当該列の決定番号が
 箱の位置の番号より大きい

もし上記の公式が成り立つなら
前者の方法で計算すると1-1/100以上
後者の方法で計算すると0

し・か・し、この場合そもそも
上記の公式が成り立つといえないから
どちらの計算も正当化できない

時枝記事はあくまで
Aを箱の中身と代表元が一致する状況
Bを具体的な数列100列が選ばれた場合として
P(A|B)を計算したに過ぎない
(したがって記事は否定できない)

セタの主張も
Aを箱の中身と代表元が一致する状況
Bを具体的な箱が選ばれた場合とすれば
P(A|B)としては正しいのだろう

しかし、どちらの方法でも
最終的なP(A)を求めることはできない
それがPrussの主張である
(PrussはThe Riddleを否定しないし、否定する必要もない)
470: 2020/03/12(木)19:46 ID:+sBkJatU(4/6)調 AAS
Dr.Prussが”conglomerability assumption”でいってるのは
端的にいえぱ、”conglomerability”として要請する
以下の公式が常に成り立つとはいえない、という指摘

P(A)=Σ(A|B)P(B)

Aを箱の中身と代表元が一致する状況とする
時枝の方法は、Bを具体的な数列100列が選ばれた場合としている
セタの反論は、Bを具体的な箱が選ばれた場合としている

前者の場合ではP(A|B)>=1-1/100である
(選べる100箱のうち、不一致の箱は高々1つ)
後者の場合ではP(A|B)は0である
(どの箱に着目したとしても、
 ほとんどすべての列で、当該列の決定番号が
 箱の位置の番号より大きい

もし上記の公式が成り立つなら
前者の方法で計算すると1-1/100以上
後者の方法で計算すると0

し・か・し、この場合そもそも
上記の公式が成り立つといえないから
どちらの計算も正当化できない

時枝記事はあくまで
Aを箱の中身と代表元が一致する状況
Bを具体的な数列100列が選ばれた場合として
P(A|B)を計算したに過ぎない
(したがって記事は否定できない)

セタの主張も
Aを箱の中身と代表元が一致する状況
Bを具体的な箱が選ばれた場合とすれば
P(A|B)としては正しいのだろう

しかし、どちらの方法でも
最終的なP(A)を求めることはできない
それがPrussの主張である
(PrussはThe Riddleを否定しないし、否定する必要もない)
471: 2020/03/12(木)19:46 ID:+sBkJatU(5/6)調 AAS
Dr.Prussが”conglomerability assumption”でいってるのは
端的にいえぱ、”conglomerability”として要請する
以下の公式が常に成り立つとはいえない、という指摘

P(A)=ΣP(A|B)P(B)

Aを箱の中身と代表元が一致する状況とする
時枝の方法は、Bを具体的な数列100列が選ばれた場合としている
セタの反論は、Bを具体的な箱が選ばれた場合としている

前者の場合ではP(A|B)>=1-1/100である
(選べる100箱のうち、不一致の箱は高々1つ)
後者の場合ではP(A|B)は0である
(どの箱に着目したとしても、
 ほとんどすべての列で、当該列の決定番号が
 箱の位置の番号より大きい

もし上記の公式が成り立つなら
前者の方法で計算すると1-1/100以上
後者の方法で計算すると0

し・か・し、この場合そもそも
上記の公式が成り立つといえないから
どちらの計算も正当化できない

時枝記事はあくまで
Aを箱の中身と代表元が一致する状況
Bを具体的な数列100列が選ばれた場合として
P(A|B)を計算したに過ぎない
(したがって記事は否定できない)

セタの主張も
Aを箱の中身と代表元が一致する状況
Bを具体的な箱が選ばれた場合とすれば
P(A|B)としては正しいのだろう

しかし、どちらの方法でも
最終的なP(A)を求めることはできない
それがPrussの主張である
(PrussはThe Riddleを否定しないし、否定する必要もない)
475: 2020/03/12(木)21:04 ID:+sBkJatU(6/6)調 AAS
>>473
>時枝記事は出題列が固定された状況での数当てゲーム

そしてセタの計算も特定の箱についての数当てゲーム

それぞれの箱での確率から、箱が変化する場合の確率は求まらない

つまりセタが時枝記事に対してつける言いがかりが
そっくりそのままセタの計算に対してもつけられる

両刃論法をありがとう!Dr.Pruss
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.045s