[過去ログ] ガロア第一論文と乗数イデアル他関連資料スレ13 (1002レス)
上下前次1-新
抽出解除 必死チェッカー(本家) (べ) 自ID レス栞 あぼーん
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
116(6): 現代数学の系譜 雑談 ◆yH25M02vWFhP 02/04(火)10:56 ID:+HgMDnV2(1/11) AAS
>>111 補足
これ、典型的な存在定理(公理)の使い方
具体的な R2の線形空間の 二つのベクトル (1,1), (−1,2) が、基底になっている
言い換えると、 (1,1), (−1,2) を、基底に取れる
証明を見ると、背後の数学の構造が分かる
証明から、基底の二つのベクトル が、かなり自由に選択できることが分かる
典型例は、 (1,0), (0,1) だが、これが 一例にすぎないことも分かる
選択公理は、選択関数の存在しか言わないが、選択が具体的であることを妨げない
(1,1), (−1,2) を選択しようが、 (1,2), (−3,2) を選択しようが、 (1,0), (0,1) を選択しようが、かまわない
省2
141(1): 現代数学の系譜 雑談 ◆yH25M02vWFhP 02/04(火)16:04 ID:+HgMDnV2(2/11) AAS
皆さま お楽しみ中、お邪魔です ;p)
>>118
>◆yH25M02vWFhPは、次元定理の「背後の数学の構造」が全く分かってない
>だから>>115みたいなことを平気で言う
>次元定理のステートメント、確認してみ?
>おまえが想像してるものと全然違うから
>外部リンク:ja.wikipedia.org
えーと、おサルさん>>7-10
いきなり 難しい定理のサイトに飛んで 消化不良ですよ
まず 順番として 下記 高校数学の美しい物語 次元定理の意味,具体例,証明
省40
142: 現代数学の系譜 雑談 ◆yH25M02vWFhP 02/04(火)16:04 ID:+HgMDnV2(3/11) AAS
つづき
英 wikipedia
外部リンク:en.wikipedia.org
Rank–nullity theorem
(google訳)
ランク-ヌル定理(階数零定理)
階数零定理は線型代数学の定理であり、次のことを主張します。
略す
したがって、等しい有限次元のベクトル空間の線型変換の場合、単射性または全射性のいずれかが全単射性を意味することになります。
(原文 It follows that for linear transformations of vector spaces of equal finite dimension, either injectivity or surjectivity implies bijectivity.)
省25
143: 現代数学の系譜 雑談 ◆yH25M02vWFhP 02/04(火)16:04 ID:+HgMDnV2(4/11) AAS
つづき
ついでに
独 wikipedia
外部リンク:de.wikipedia.org
Rangsatz
Der Rangsatz oder Dimensionssatz ist ein Satz aus dem mathematischen Teilgebiet der linearen Algebra. Er zeigt einen Zusammenhang zwischen den Dimensionen der Definitionsmenge, des Kerns und des Bildes einer linearen Abbildung zwischen zwei Vektorräumen auf.
(google 英訳)
Table of contents
1 Sentence
2 Proofs
省13
146(1): 現代数学の系譜 雑談 ◆yH25M02vWFhP 02/04(火)16:33 ID:+HgMDnV2(5/11) AAS
>>131
(引用開始)
>>129の「」には反例がある
つまり、線形空間の次元が無限濃度の場合
単に同じ濃度の線形独立なベクトルが張る空間が
元の空間より真に小さい場合があり得る
だから次元定理はもっと精密な言い方をしてるが
◆yH25M02vWFhPは勝手に粗視化してる
有限次元でOKだから無限次元でもそうなる、
と考えるのはあさはか
省13
147(1): 現代数学の系譜 雑談 ◆yH25M02vWFhP 02/04(火)16:34 ID:+HgMDnV2(6/11) AAS
つづき
Proof that every vector space has a basis
Let V be any vector space over some field F. Let X be the set of all linearly independent subsets of V.
The set X is nonempty since the empty set is an independent subset of V, and it is partially ordered by inclusion, which is denoted, as usual, by ⊆.
Let Y be a subset of X that is totally ordered by ⊆, and let LY be the union of all the elements of Y (which are themselves certain subsets of V).
Since (Y, ⊆) is totally ordered, every finite subset of LY is a subset of an element of Y, which is a linearly independent subset of V, and hence LY is linearly independent. Thus LY is an element of X. Therefore, LY is an upper bound for Y in (X, ⊆): it is an element of X, that contains every element of Y.
省7
151(6): 現代数学の系譜 雑談 ◆yH25M02vWFhP 02/04(火)16:58 ID:+HgMDnV2(7/11) AAS
>>137-140
>>選択関数を好きに構成できると?
> 「構成」はできない
> ただ、考えられる選択関数は無数にある
ありがとうございます。
1)そもそも、公理とは 条件さえ許せば 無制限に適用できる
存在定理(公理)とは、ある条件の数学対象が存在することを主張する
その数学対象は、存在定理の場合には、具体的な構成が与えられていない
が、具体的な構成が与えられる場合を含んでよい(そうしなければ、構成の有無で 場合分けが必要なるw)
有限集合と、無限集合の区別も同様で、選択公理は無限集合限定という制約はない(勝手に無限集合限定の制約があると思い込む人あり)
省3
159: 現代数学の系譜 雑談 ◆yH25M02vWFhP 02/04(火)17:48 ID:+HgMDnV2(8/11) AAS
>>148-150
>線形空間の基底と、線型位相空間の基底は、異なる
>前者は有限和しか考えないが、後者は無限和を考える
>線形「位相」空間という所以である
下記だね
ja.wikipedia 基底 (線型代数学) 及び 河東泰之, 線形代数と関数解析学
『かわりに有用なのは,任意のベクトルを無限個のベクトルの線形結合で表すことである.ヒルベルト空間では,これを実現する正規直交基底を取ることがいつでもでき,有限次元空間とよく似た話が無限次元でも展開できる.フーリエ級数はその具体例として大変重要なものである.』
だね
(参考)
外部リンク:ja.wikipedia.org
省13
160(2): 現代数学の系譜 雑談 ◆yH25M02vWFhP 02/04(火)17:48 ID:+HgMDnV2(9/11) AAS
つづき
外部リンク:www.ms.u-tokyo.ac.jp
河東泰之(かわひがしやすゆき) (Google Scholar Page)
外部リンク[htm]:www.ms.u-tokyo.ac.jp
河東泰之の「数理科学」古い記事リスト
外部リンク[pdf]:www.ms.u-tokyo.ac.jp
6.河東泰之, 線形代数と関数解析学,「数理科学」 Vol.46-6, pp.39-43, サイエンス社,2008
1. はじめに
線形代数は線形空間とその上の線形作用素を取り扱う.
ごく基礎的な部分は線形空間が有限次元でも無限次元でも違いはないが,線形代数の中心的な話題,すなわち対角化,ジョルダン標準形,ランクの話などは,線形空間が有限次元でないと話がうまく進まない.
省21
163(3): 現代数学の系譜 雑談 ◆yH25M02vWFhP 02/04(火)18:03 ID:+HgMDnV2(10/11) AAS
>>156-158
選択公理および選択関数について
トンチンカンな発言をしている人がいた
だから、当たり前のことを、強調しただけですよ (^^
>だから命題ごとに個別に規定要(理論ごと規定する場合は「以下、断り無き場合〇〇公理を前提とする」などと表記)
大体は、ほぼ ZFCベース
だから、特に断りがない場合は、ZFCベースがデフォ(デフォルト)ですよ
たまに、「この証明には、選択公理が必要」とか、後出しで 注意を書く場合あり (^^
167(5): 現代数学の系譜 雑談 ◆yH25M02vWFhP 02/04(火)18:21 ID:+HgMDnV2(11/11) AAS
>>100-101
>治らないコピペ癖 ID:oyw47Vnz
>ほっとけ ID:pX4W9Cg1
ID:pX4W9Cg1は、御大ね
ID:oyw47Vnzは、おサル>>7-10 かな?
1)院試合格までは、数学の実力は主に試験で測られる
限られた場所で、カンニング無しで、限られた時間内で どれだけ解けるか
2)しかし、院試合格の後の 数学の実力は なんでもあり
カンニングありで、誰に相談しても 聞いても良い
時間制約は、あっても年単位
省14
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 3.195s*