スレタイ 箱入り無数目を語る部屋29(あほ二人の”アナグマの姿焼き"Part3w) (290レス)
スレタイ 箱入り無数目を語る部屋29(あほ二人の”アナグマの姿焼き"Part3w) http://rio2016.5ch.net/test/read.cgi/math/1736907570/
上
下
前次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
レス栞
リロード規制
です。10分ほどで解除するので、
他のブラウザ
へ避難してください。
159: 132人目の素数さん [] 2025/06/09(月) 08:15:15.64 ID:BV7QkT7M >>158 >”有限時間では終わらない”ことの多くを、選択公理以外でも 全部認めるのが現代数学なのです >一方、箱入り無数目を認めると、明らかに既存の数学と矛盾する部分があるのです >例えば、確率論の多くの命題と矛盾を生じる > 乱数理論で、可算無限の乱数を発生させて > s = (s1,s2,s3 ,・・・) なる数列を作ったときに > ある sd が、それ以外の値を用いて 確率1-ε で的中できる > となると矛盾 もし 「乱数理論で、可算無限の乱数を発生させて s = (s1,s2,s3 ,・・・) なる数列を作ったときに ある sd が、それ以外の値を用いて 確率1-ε で的中できる」 というなら、もちろん矛盾である そこで質問 箱入り無数目のどこで 「あるsdが、それ以外の値を用いて 確率1-ε で的中できる」 と述べている? どこを読んでもそう書いてある箇所はないが n列に分割すれば、それぞれの列について、ある箱が選べる そしてそのうち箱の中身が代表列の項と一致しないのはたかだか1つ だから、中身が代表列の項と一致する箱は少なくともn個中n−1個あり したがって、箱をランダムに選べばそのような箱を選ぶ確率は1-1/n nをいくらでも大きくすることによって 任意のε>0に対して 上記の箱を選ぶ確率を1-ε以内におさめることができる 上記は「ある箱」を特定していない 的中できる箱を確率1-εで選べる、といっている つまり、確率事象は決められた箱の中身ではなく、回答者が選ぶ箱の番号である ID:u17nGVrx は 記事の文章を誤読して、その誤読結果に対して 確率論と矛盾しているといってるだけ 誤読結果が確率論と矛盾するのはその通りだが それは記事の内容とは異なるので 残念ながら無意味と言わざるを得ない (完) http://rio2016.5ch.net/test/read.cgi/math/1736907570/159
238: 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2025/06/15(日) 09:59:45.64 ID:lv2xCBEK >>204 つづき (引用開始) ”確率変数の定義 [定義] 標本空間Ω上の実数値関数 (各根元事象に実数を対応させたもの)を確率変数random variable という” (引用終り) さて、”確率変数の定義”は、上記の通りで その本性は 関数であって ”変数”に 引き摺られて 1試行でコロコロ変わるなどの妄想は、ダメですよw さらに、確率の用語を確認し整備しょう 試行:サイコロを投げる、コインを投げるといった実験のことを試行と呼びます 事象:試行をして観測された結果のことは事象と呼びます 全事象(標本空間):事象が対応する部分集合が全体集合の場合、その事象を全事象(標本空間)という 根元事象:事象が対応する部分集合が集合の一つの要素の場合、その事象を根元事象と言います (参考) https://wakara.co.jp/mathlog/20230419 wakara.co やさしく学ぶ統計学〜試行と事象とは?〜 2023年4月19日 1. 試行、事象とは? 確率を考える際、サイコロを投げる、コインを投げるといった実験のことを試行と呼びます。 また、試行をして観測された結果のことは事象と呼びます。 これらの言葉はやや紛らわしいですが、例えばサイコロ投げの場合は、サイコロを投げるという実験そのものが試行であり、「1の目が出た」などの結果が事象となります。 https://www.hmathmaster.com/matha/%E9%9B%86%E5%90%88%E3%81%AB%E3%82%88%E3%82%8B%E5%A0%B4%E5%90%88%E3%81%AE%E6%95%B0%E3%81%A8%E7%A2%BA%E7%8E%87%E3%81%AE%E8%80%83%E3%81%88%E6%96%B9/ 数学A > 場合の数と確率 > 集合による場合の数と確率の考え方 著者:L&M個別オンライン教室 瀬端隼也 修正日:2021年4月13日 事象 事象が対応する部分集合が全体集合の場合、その事象を全事象といい、事象が対応する部分集合が空集合の場合、その事象を空事象といい、事象が対応する部分集合が集合の一つの要素の場合、その事象を根元事象と言います。 そうすると、場合の数における全体の事柄が全事象と対応し、事柄が事象に対応し、一つ一つの場合が根元事象に対応するという、対応関係があります。 https://ja.wikipedia.org/wiki/%E6%A8%99%E6%9C%AC%E7%A9%BA%E9%96%93 標本空間 確率論にて、試行結果全体の集合のことである[4] 標本空間はふつう Ω で表す。全事象という意味では U(Universe の頭文字)で表すことも多い 測度論により、標本空間の部分集合で確率をもつものには可測であることが必要になる。標本空間の部分集合のうち確率をもつものを事象、事象空間をふつう F⊂2^Ω で表す。 F は Ω の完全加法族である。 これ以上分解できない事象を根元事象または単純事象 (elementary event / simple event) という。注意したいのは、根元事象は標本空間の1点を表す集合であり、元ではない。1点を表す集合か元であるかはそれぞれ「根元事象」「標本点」で区別される(例えば、サイコロを振ったとき、根元事象は {1}, …, {6}) http://rio2016.5ch.net/test/read.cgi/math/1736907570/238
メモ帳
(0/65535文字)
上
下
前次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.025s