[過去ログ] ガロア第一論文と乗数イデアル他関連資料スレ11 (1002レス)
前次1-
抽出解除 必死チェッカー(本家) (べ) 自ID レス栞 あぼーん

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
1
(7): 2024/08/30(金)07:16 ID:cHgt4Zdk(1/11) AAS
前スレが1000近く又は1000超えになったので、新スレを立てる

2chスレ:math
前スレ ガロア第一論文と乗数イデアル他関連資料スレ10

このスレは、ガロア第一論文と乗数イデアル他関連資料スレです
関連は、だいたい何でもありです(現代ガロア理論&乗数イデアル関連他文学論・囲碁将棋まであります)

資料としては、まずはこれ
https://sites.google.com/site/galois1811to1832/
ガロアの第一論文を読む
渡部 一己 著 (2018.1.28)
PDF
https://sites.google.com/site/galois1811to1832/galois-1.pdf?attredirects=0

<乗数イデアル関連>
ガロア第一論文及びその関連の資料スレ
2chスレ:math 以降ご参照
https://en.wikipedia.org/wiki/Multiplier_ideal Multiplier ideal
https://mathoverflow.net/questions/142937/motivation-for-multiplier-ideal-sheaves motivation for multiplier ideal sheaves asked Sep 23, 2013 Koushik
省9
2
(2): 2024/08/30(金)07:17 ID:cHgt4Zdk(2/11) AAS
つづき

メモ
https://www.iwanami.co.jp/book/b374907.html
岩波科学ライブラリー
ガロアの論文を読んでみた
時代を超越していたガロアの第1論文.その行間を補いつつ,高校数学をベースにじっくりと読み解く.

https://www.iwanami.co.jp//images/book/374907.jpg

著者 金 重明 著
刊行日 2018/09/21

試し読み
https://www.iwanami.co.jp/moreinfo/tachiyomi/0296770.pdf
省3
3: 2024/08/30(金)07:17 ID:cHgt4Zdk(3/11) AAS
つづき

http://arigirisu2011.さくら.ne.jp/public_html/Galois01.html
ガロア理論 Galois theory

第一論文
ガロアの第一論文は、「方程式が代数的に解けるための必要十分条件」を【原理】と【応用】で論じている。
ここでは【原理】の部分を確認する。1831年当時「群」・「体」の用語がなく、ガロアは「群」・「体」という言葉は使わなかったが、ここでは「群」・「体」という用語を使って説明する。

概要
第一論文は、
・定義(可約と既約)
・定義(置換群)
・補題1(既約多項式の性質)→補題2(根でつくるV)→補題3(Vで根を表す)→補題4(Vの共役)
・定理1(「方程式のガロア群」の定義)
・定理2(「方程式のガロア群」の縮小)
・定理3(補助方程式のすべての根を添加)
・定理4(縮小したガロア群の性質)
・定理5(方程式が代数的に解ける必要十分条件)
というストーリーで進みます。

http://arigirisu2011.さくら.ne.jp/public_html/Galois02.html
ガロア理論 Galois theory
省1
4
(1): 2024/08/30(金)07:17 ID:cHgt4Zdk(4/11) AAS
つづき

メモ (デデキントのガロア理論講義の話が興味深い)
https://www.jstage.jst.go.jp/article/kisoron1954/15/4/15_4_159/_pdf
ガロア理論の推移史について
中村幸四郎*
科学基礎論研究1982

この論文は多くの後継者を経て,後に「ガロア理論」
といわれ,数学理論のうちの理論ともいわれるものとな
り,現代に及んでいることは周知のとおりであるが,私
はこの小文において,これがフランス数学からドイツ数
学へ移行する問題を,数学史の1つの問題として考察し
ょうと思う。
2.現在行われている「ガロア理論」は約150年の歳月
を経て,ガロアの原著とは著しく変ったものとなってい
る.その最も著しい点はガロアの原著が群(とくに有限
群)を基調とするものであるのに対比して,現代の理論
は体(Korper)の理論,特に体の「拡大」(Erweiterung)
を基礎に置くものとなっている。
https://ja.wikipedia.org/wiki/%E4%B8%AD%E6%9D%91%E5%B9%B8%E5%9B%9B%E9%83%8E
中村 幸四郎(1901年6月6日 - 1986年9月28日)は、日本の数学者(数学基礎論・数学史)。大阪大学名誉教授、関西学院大学名誉教授、兵庫医科大学名誉教授、文学博士。従四位勲三等旭日中綬章

つづく
5: 2024/08/30(金)07:17 ID:cHgt4Zdk(5/11) AAS
つづき

https://www.kurims.kyoto-u.ac.jp/~kenkyubu/kokai-koza/H18-tamagawa.pdf
数学入門公開講座テキスト(京都大学数理解析研究所,平成18年)
ガロア理論とその発展 玉川安騎男

環の典型的な現れ方として、与えられた空間Xの上の(適当な条件を満たす)関数全体のなす環があります。この場合、関数の値の和、差、積を考えることにより、関数の和、差、積を定義します。(1,0は、それぞれ恒等的に値1,0を取る関数として定義します。)
実は、任意の環はこのようにして得られることが知られています。
より正確に言うと、与えられた環Rに対し、アフィンスキームと呼ばれるある種の空間Spec(R)が定まり、Rは空間Spec(R) 上の正則関数全体のなす環と自然に同一視されます。更に、環を考えることとアフィンスキームを考えることは本質的に同等であることが知られています。一般のスキームは、アフィンスキームをはり合わせることにより定義されます。
1950年代後半にグロタンディークによって定義されたこのスキームは、代数多様体(≈多項式で定義される図形)の概念を大きく一般化するもので、現在の代数幾何学・数論幾何学の基礎をなす概念です。

グロタンディークの提唱した形での遠アーベル幾何は、遠アーベルスキームの一般的な定義が見つかっていないなど、理論的にはまだまだ発展途上の状態ですが、既にいくつもの重要な結果が得られています。例えば、ノイキルヒ・内田の定理は、(グロタンディークが遠アーベル幾何を提唱する以前の結果ですが)遠アーベル幾何における一つの基本的な結果となっています。また、近年では、代数曲線やそのモジュライ空間の遠アーベル幾何の研究が、(本研究所を中心に)さまざまな角度から進められ、興味深い結果がいくつも得られています。このように、19世紀前半に生まれたガロア理論は、現代もなお強い生命力を持って進化しています。

https://www.jstage.jst.go.jp/article/sugaku1947/34/1/34_1_1/_pdf/-char/en
論説 数学 (1981年9月14日提出)*1981年4月5日京都大学における第9回日本数学会彌永賞受賞講演
ソリトン方程式とKac-Moodyリー環 柏原 正樹*神保 道夫 伊達 悦朗 三輪 哲二
§1.序
代数方程式の研究に,解の変換群の概念を導入し,その有効性を示したのはGaloisである.こ
のGaloisの視点を,微分方程式に適用する試みの中から,リー群,リー環の概念は生まれた.線
型微分方程式を,この立場で研究するものとして,Picard-Vessiot理論があり,そこに現われる群
は,有限次元Lie群である.有限次元半単純リー環の研究における, Cartan行列を基礎におく理
論構成を一般化して,Kac-Moobyリー環と呼ばれる,無限次元リー環の概念が生まれた([IY 38],
[IY 68],[40])1).ほぼ同じ頃,ソリトン理論が,その姿を現わしつつあった.ソリトン理論にあら
われる非線型方程式(以下,ソリトン方程式と呼ぶ)は,線型方程式系の可積分条件として表わされ
るという側面をもつ.本稿では,ソリトン方程式の解の変換群を考察し,ある種のソリトン方程式
の変換群のリー環として,Euclid型リー環と呼ばれるKac-Moodyリー環が現われることを示す.
省1
6: 2024/08/30(金)07:18 ID:cHgt4Zdk(6/11) AAS
つづき

https://www.math.kyoto-u.ac.jp/~fujino/hokoku.html
https://www.math.kyoto-u.ac.jp/~fujino/non-vani-rims.pdf
消滅定理と非消滅定理
京都大学 藤野修 数理研講究録, 1745,(2011)
このノートでは、対数的標準対に対する消滅定理と非消滅定理を解説する。我々の新しいアプローチは、対数的標準対に対する極小モデル理論の基本定理たちの証明を著しく簡略化する

目次
1消滅定理と非消滅定理ってなに?
2 2はじめに3
3おわび4
4特異点の定義5
5非消滅定理7
以下略

参考文献
[BCHM] C.Birkar, P.Cascini, C.Hacon, J.McKernan, Existence of minimalmodelsforvarietiesofloggeneraltype,preprint(2006).
[藤1]藤野 修,極小モデル理論の新展開,雑誌「数学」61巻2号,162186(2009).

1消滅定理と非消滅定理ってなに?
今ここを読んでいる人は、せめてこの章だけは読んで欲しい。
この章は高次元代数多様体論普及のための解説である。非専門家向けに書いてある。
以下すべて複素数体上で考える。
Xを非特異射影代数多様体とし、DをX上のカルティエ因子とする。典型的な消滅定理は、

代数幾何学を学んだことのある人なら誰でも、リーマン面(もしくは代数曲線)上でリーマン–ロッホの公式をつかって線形系の性質を調べるという話を勉強したことがあると思う。
我々はその話の単純な高次元化を考えていると言っても良いかもしれない。
省10
7: 2024/08/30(金)07:19 ID:cHgt4Zdk(7/11) AAS
つづき

4特異点の定義
ここでは特異点の定義について最低限のことだけを述べておく。詳しくは、[K森,§2.3]を見ていただきたい。極小モデル理論の専門家以外には頭の痛くなる話題であろう。

5非消滅定理
以下の定理がこの章の主定理である。対数的標準対に対する非消滅定理である。

7証明のアイデア
ここでは非消滅定理の証明のアイデアについて説明する。

8今後の課題
今回の仕事で、[K森]の2章の後半と3章が完全に一般化されたことになる。
道具である消滅定理が[K森]よりも格段に進歩しているからである。
省6
8: 2024/08/30(金)07:20 ID:cHgt4Zdk(8/11) AAS
つづき

藤野修先生は、令和5年 大阪科学賞を受賞されています
おめでとうございます

(参考)
//osaka-prize.ostec.or.jp/41-1
第41回(令和5年度)
大阪科学賞(OSAKA SCIENCE PRIZE)受賞者の横顔
藤野  修 49歳

研究業績:小平消滅定理の一般化と代数幾何学への応用
代数多様体とは、大雑把に言うと、有限個の多項式の共通零点集合のことです。高校の教科書に出てくる円、楕円、放物線などは代数多様体です。
もっと簡単な平面上の直線も代数多様体です。高校では主にxy平面上で幾何学図形を考えます。これは二次元の空間内で一次元の代数多様体を考えることに対応します。xyz空間の中の球面も代数多様体です。これは三次元空間内の二次元の代数多様体です。
このように代数多様体は素朴な幾何学的対象です。ここで変数の数を増やしてみましょう。幾何学的には高次元の空間を考えることになります。高次元の空間内で複数の代数多様体の交わりを考えます。私たちはこのような幾何学図形を日々研究しています。
日本人フィールズ賞受賞者3名の仕事も高次元代数多様体に関するものです。
残念ながら高次元の代数多様体は絵に描くことができません。
そこで私たちは抽象的な数学理論を展開します。高次元代数多様体論の究極目標の一つは双有理分類という大雑把な分類を完成させることです。
現在の標準理論は、森重文によって1980年代に創められた森理論や極小モデル理論と呼ばれるものです。
私は小平の消滅定理と呼ばれるコホモロジーの消滅定理の一般化を確立し、広中の特異点解消と小平消滅定理の一般化を駆使して森理論の適用範囲を究極的に拡張するという仕事をしました。
ホッジ理論的な観点からは理論の混合化を実行したことになります。
これにより、従来不可能であったぐちゃぐちゃに潰れた高次元代数多様体の研究も可能になり、代数多様体の退化や特異点の研究などに応用されています。
このような基礎研究が実社会で応用される日が来ることを夢見ています。

代数多様体とは?
省9
9
(19): 2024/08/30(金)07:20 ID:cHgt4Zdk(9/11) AAS
つづき

なお、
おサル=サイコパス*のピエロ(不遇な「一石」https://textream.yahoo.co.jp/personal/history/comment?user=_SrJKWB8rTGHnA91umexH77XaNbpRq00WqwI62dl 表示名:ムダグチ博士 Yahoo! ID/ニックネーム:hyperboloid_of_two_sheets**) (Yahoo!でのあだ名が、「一石」)
<*)サイコパスの特徴>
(参考)http://blog.goo.ne.jp/grzt9u2b/e/c1f41fcec7cbc02fea03e12cf3f6a00e サイコパスの特徴、嘘を平気でつき、人をだまし、邪悪な支配ゲームに引きずり込む 2007年04月06日
(**)注;https://en.wikipedia.org/wiki/Hyperboloid Hyperboloid
Hyperboloid of two sheets :https://upload.wikimedia.org/wikipedia/commons/thumb/f/f2/Hyperboloid2.png/150px-Hyperboloid2.png
https://ja.wikipedia.org/wiki/%E5%8F%8C%E6%9B%B2%E9%9D%A2 双曲面
二葉双曲面 :https://upload.wikimedia.org/wikipedia/commons/thumb/b/b5/HyperboloidOfTwoSheets.svg/180px-HyperboloidOfTwoSheets.svg.png

おサルさんの正体判明!(^^)
スレ12 2chスレ:math より
”「ガロア理論 昭和で分からず 令和でわかる
 #平成どうしたw」
昭和の末期に、どこかの大学の数学科
多分、代数学の講義もあったんだ
でも、さっぱりで、落ちこぼれ卒業して
平成の間だけでも30年、前後を加えて35年か”
”(修士の)ボクの専攻は情報科学ですね”とも

可哀想に、数学科のオチコボレで、鳥無き里のコウモリ***)そのもので、威張り散らし、誰彼無く噛みつくアホ
本来お断り対象だが、他のスレでの迷惑が減るように、このスレで放し飼いとするw(^^

注***)鳥無き里のコウモリ:自分より優れた数学DRやプロ数学者が居ないところで、たかが数学科のオチコボレが、威張り散らす姿は、哀れなり〜!(^^;
省6
10
(4): 2024/08/30(金)07:27 ID:cHgt4Zdk(10/11) AAS
つづき

再録します。おサルの傷口に塩ですw
2chスレ:math
2023/06/11(日)
下記だねw(>>63再録)
スレ主です
数学科オチコボレのサルさんw 2chスレ:math
線形代数が分かっていないのは、あ な た! www
前スレより
2chスレ:math
傷口に塩を塗って欲しいらしいなw
 >>406-407より以下再録
棚から牡丹餅というかw

つまり
・私「正方行列の逆行列」(数年前)
 ↓
・おサル「正則行列を知らない線形代数落ちこぼれ」
 ↓
・私「零因子行列のことだろ?知っているよ」
 ↓
・おサル「関係ない話だ!」と絶叫
 ↓
・おサル『正則行列の条件なら、「零因子行列であること」はアウトですね
 いかなる行列が零因子行列か述べる必要がありますから』
 ↓
・私「あんた、上記の自分の文章を読み返して おかしいと気づかないか?」
 ↓
・おサル『「0以外の体の元は乗法逆元を持たない」のつもりで
「零因子以外の行列は乗法逆元を持たない」と書いて ケアレスミスだと言い張りたいんだろうけど』

<解説>
1)何度か、アホが気づくチャンスあった
省18
14
(3): 現代数学の系譜 雑談 ◆yH25M02vWFhP 2024/08/30(金)07:54 ID:cHgt4Zdk(11/11) AAS
ふっふ、ほっほ
前スレより再録
itest.5ch.net/rio2016/test/read.cgi/math/1721183883/811
戻るが >>556より
固有値問題の数値解法
ja.wikipedia.org/wiki/%E5%9B%BA%E6%9C%89%E5%80%A4%E5%95%8F%E9%A1%8C%E3%81%AE%E6%95%B0%E5%80%A4%E8%A7%A3%E6%B3%95
数値解法の必要性
5次以上の一般の(実数あるいは複素数の)行列において
有限回の代数的操作(四則及び冪根を開く)によって
固有値を厳密に表わす計算手順は存在しない
そのため固有値問題の数値解法には必ず反復法を用いることになる
もしも有限回の代数的操作で厳密な固有値を求める方法があったとすれば
係数が一般のn次代数方程式の解がその方程式の多項式に対する同伴行列の固有値として
有限回の代数的操作で求められることになるが
これは代数方程式に関するガロア理論のよく知られた結論とは矛盾するので
不可能であることを考えればただちにわかる
(引用終り)

ここ >>747より再録
dora.bk.tsukuba.ac.jp/~takeuchi/?%E9%87%8F%E5%AD%90%E5%8A%9B%E5%AD%A6%E2%85%A0%2F%E5%9B%BA%E6%9C%89%E5%80%A4%E3%81%A8%E6%9C%9F%E5%BE%85%E5%80%A4
量子力学I 固有値と期待値 武内修@筑波大 2024-05-17
目次
線形代数IIで学んだ関数空間の考え方 が量子力学でどのように生かされるかを学ぶ
・関数ベクトル・線形演算子
・シュレーディンガー方程式・線形演算子の固有値
・固有関数の物理量は固有値そのものである
(引用終り)

1)量子力学の無限次の固有値を考えると
 固有方程式 ja.wikipedia.org/wiki/%E5%9B%BA%E6%9C%89%E5%A4%9A%E9%A0%85%E5%BC%8F
 を経由することを考える人はいない
 すなわち、無限次の代数方程式を経由することになるが
 そんなバカを考える人はいない
省7
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.065s