[過去ログ] 現代数学の系譜 カントル 超限集合論 (1002レス)
上下前次1-新
抽出解除 レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
504(2): 現代数学の系譜 雑談 ◆e.a0E5TtKE 2019/11/27(水)22:09 ID:qnEhNItW(9/12) AAS
>>491
>基礎付け問題
これは、下記が、元記事だな(^^
https://en.wikipedia.org/wiki/Finite_set
Finite set
(抜粋)
Contents
1 Definition and terminology
2 Basic properties
3 Necessary and sufficient conditions for finiteness
4 Foundational issues
5 Set-theoretic definitions of finiteness
5.1 Other concepts of finiteness
Foundational issues
Georg Cantor initiated his theory of sets in order to provide a mathematical treatment of infinite sets. Thus the distinction between the finite and the infinite lies at the core of set theory.
Certain foundationalists, the strict finitists, reject the existence of infinite sets and thus recommend a mathematics based solely on finite sets.
Mainstream mathematicians consider strict finitism too confining, but acknowledge its relative consistency: the universe of hereditarily finite sets constitutes a model of Zermelo?Fraenkel set theory with the axiom of infinity replaced by its negation.
Even for those mathematicians who embrace infinite sets, in certain important contexts, the formal distinction between the finite and the infinite can remain a delicate matter.
The difficulty stems from Godel's incompleteness theorems. One can interpret the theory of hereditarily finite sets within Peano arithmetic (and certainly also vice versa), so the incompleteness of the theory of Peano arithmetic implies that of the theory of hereditarily finite sets.
In particular, there exists a plethora of so-called non-standard models of both theories. A seeming paradox is that there are non-standard models of the theory of hereditarily finite sets which contain infinite sets, but these infinite sets look finite from within the model.
省1
505(1): 現代数学の系譜 雑談 ◆e.a0E5TtKE 2019/11/27(水)22:11 ID:qnEhNItW(10/12) AAS
>>504
つづき
(This can happen when the model lacks the sets or functions necessary to witness the infinitude of these sets.)
On account of the incompleteness theorems, no first-order predicate, nor even any recursive scheme of first-order predicates, can characterize the standard part of all such models. So, at least from the point of view of first-order logic, one can only hope to describe finiteness approximately.
More generally, informal notions like set, and particularly finite set, may receive interpretations across a range of formal systems varying in their axiomatics and logical apparatus. The best known axiomatic set theories include Zermelo-Fraenkel set theory (ZF), Zermelo-Fraenkel set theory with the Axiom of Choice (ZFC),
Von Neumann?Bernays?Godel set theory (NBG), Non-well-founded set theory, Bertrand Russell's Type theory and all the theories of their various models. One may also choose among classical first-order logic, various higher-order logics and intuitionistic logic.
A formalist might see the meaning[citation needed] of set varying from system to system. Some kinds of Platonists might view particular formal systems as approximating an underlying reality.
省4
508(3): 現代数学の系譜 雑談 ◆e.a0E5TtKE 2019/11/28(木)00:22 ID:QdpmOFrx(1/7) AAS
>>504 追加
https://en.wikipedia.org/wiki/Finite_set
Finite set
(抜粋)
Necessary and sufficient conditions for finiteness
In Zermelo?Fraenkel set theory without the axiom of choice (ZF), the following conditions are all equivalent:[citation needed]
2.(Kazimierz Kuratowski) S has all properties which can be proved by mathematical induction beginning with the empty set and adding one new element at a time. (See below for the set-theoretical formulation of Kuratowski finiteness.)
Set-theoretic definitions of finiteness
省3
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.049s