[過去ログ] 現代数学の系譜 カントル 超限集合論 (1002レス)
前次1-
抽出解除 必死チェッカー(本家) (べ) 自ID レス栞 あぼーん

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
508
(3): 現代数学の系譜 雑談 ◆e.a0E5TtKE 2019/11/28(木)00:22 ID:QdpmOFrx(1/7) AAS
>>504 追加

https://en.wikipedia.org/wiki/Finite_set
Finite set
(抜粋)

Necessary and sufficient conditions for finiteness
In Zermelo?Fraenkel set theory without the axiom of choice (ZF), the following conditions are all equivalent:[citation needed]

2.(Kazimierz Kuratowski) S has all properties which can be proved by mathematical induction beginning with the empty set and adding one new element at a time. (See below for the set-theoretical formulation of Kuratowski finiteness.)

Set-theoretic definitions of finiteness
省3
509
(2): 現代数学の系譜 雑談 ◆e.a0E5TtKE 2019/11/28(木)00:24 ID:QdpmOFrx(2/7) AAS
>>508

つづき

Kuratowski finiteness is defined as follows. Given any set S, the binary operation of union endows the powerset P(S) with the structure of a semilattice.
Writing K(S) for the sub-semilattice generated by the empty set and the singletons, call set S Kuratowski finite if S itself belongs to K(S).[8] Intuitively,
K(S) consists of the finite subsets of S. Crucially, one does not need induction, recursion or a definition of natural numbers to define generated by since one may obtain K(S) simply by taking the intersection of all sub-semilattices containing the empty set and the singletons.

Readers unfamiliar with semilattices and other notions of abstract algebra may prefer an entirely elementary formulation.
Kuratowski finite means S lies in the set K(S), constructed as follows. Write M for the set of all subsets X of P(S) such that:

X contains the empty set;
For every set T in P(S), if X contains T then X also contains the union of T with any singleton.
Then K(S) may be defined as the intersection of M.
省4
510
(3): 現代数学の系譜 雑談 ◆e.a0E5TtKE 2019/11/28(木)00:30 ID:QdpmOFrx(3/7) AAS
>>508-509
> 2.(Kazimierz Kuratowski) S has all properties which can be proved by mathematical induction beginning with the empty set and adding one new element at a time. (See below for the set-theoretical formulation of Kuratowski finiteness.)
>Kuratowski finite means S lies in the set K(S), constructed as follows. Write M for the set of all subsets X of P(S) such that:
>X contains the empty set;
>For every set T in P(S), if X contains T then X also contains the union of T with any singleton.
>Then K(S) may be defined as the intersection of M.

なるほど
”Kuratowski finiteness”の定義では、
CやRやQやNのシングルトン
{C}や{R}や{Q}や{N} 達は
有限集合にはならんな!
思った通りだったな!ww(^^;
511
(1): 現代数学の系譜 雑談 ◆e.a0E5TtKE 2019/11/28(木)00:37 ID:QdpmOFrx(4/7) AAS
>>509
>Writing K(S) for the sub-semilattice generated by the empty set and the singletons, call set S Kuratowski finite if S itself belongs to K(S).[8] Intuitively,
>K(S) consists of the finite subsets of S. Crucially, one does not need induction, recursion or a definition of natural numbers to define generated by since one may obtain K(S) simply by taking the intersection of all sub-semilattices containing the empty set and the singletons.

もし、singleton が、ZFCの中で正則性公理により有限に留まらざるを得ないならば、話は単純だが
しかし、そうではないからこそ、Kuratowski先生も苦労して、”Kuratowski finiteness”を定義している
かつ、それでこそ、Kuratowskiの論文の値打ちもあろうというものよww(^^;
519
(5): 現代数学の系譜 雑談 ◆e.a0E5TtKE 2019/11/28(木)21:01 ID:QdpmOFrx(5/7) AAS
>>501-502 補足
(引用開始)
天才Zermeloが、シングルトンによる自然数の構成を与えた(1908年)
(”The natural numbers are represented by Zermelo as by Φ, {Φ}, {{Φ}}, …, and the Axiom of Infinity gives us a set of these.”)
https://ja.wikipedia.org/wiki/%E8%87%AA%E7%84%B6%E6%95%B0
自然数
例えば、0 := {}, suc(a) := {a} と定義したならば、
0 := {}
1 := {0} = {{}}
2 := {1} = {{{}}}
3 := {2} = {{{{}}}}
と非常に単純な自然数になる。
(引用終り)

さて
・上記のように、シングルトンは、有限には限らない
 (これは自明だが以下説明する)
・数学では、可算無限を考えることは、頻繁にある
・例えば、下記の時枝記事は”可算無限個ある.箱それぞれに,私が実数を入れる”という記載から始まる
・あるいは、下記の形式的冪級数の各項の係数が、”箱が可算無限個ある”ことに相当するだろう
・また、下記のヒルベルトの無限ホテルのパラドックスでは、”客室が無限にあるホテルを考える”となる
・さて、可算無限個ある箱に、縦棒”|”を入れるとする。”|||・・・”となる
 これを、利用して、・・・|||Φ|||・・・、
 つまりΦを真ん中にして、左右に”|||・・・”を配置する
・ここで、縦棒”|”を左カッコ{ や、右カッコ }に取り替える。即ち
 左の・・・|||→・・・{{{ に
 右の|||・・・→{{{・・・ に 取り替えると
 ・・・{{{Φ}}}・・・となる
 ここで、Φを取り除けば、・・・{{{ }}}・・・
 ここでΦ={ }を替えれば、・・・{{{{ }}}}・・・となる
・ヒルベルトの無限ホテルや形式的冪級数の存在が、否定できない(当然できないよね)
 とすれば、”|||・・・”の存在も否定できない
省3
520: 現代数学の系譜 雑談 ◆e.a0E5TtKE 2019/11/28(木)21:02 ID:QdpmOFrx(6/7) AAS
>>519
つづき

(参考)
ガロア過去スレ20 再録 2chスレ:math
1.時枝問題(数学セミナー201511月号*)の記事)の最初の設定はこうだった。
「箱がたくさん,可算無限個ある.箱それぞれに,私が実数を入れる.
どんな実数を入れるかはまったく自由,例えばn番目の箱にe^πを入れてもよいし,すべての箱にπを入れてもよい.
もちろんでたらめだって構わない.そして箱をみな閉じる.

*)訂正:原文201611月号→201511月号
https://www.nippyo.co.jp/shop/magazine/6987.html
数学セミナー  2015年11月号
箱入り無数目───────────────時枝 正 36

https://ja.wikipedia.org/wiki/%E5%BD%A2%E5%BC%8F%E7%9A%84%E5%86%AA%E7%B4%9A%E6%95%B0
形式的冪級数
(抜粋)
多項式が有限個の項しか持たないのに対し、形式的冪級数は項が有限個でなくてもよい。

https://ja.wikipedia.org/wiki/%E3%83%92%E3%83%AB%E3%83%99%E3%83%AB%E3%83%88%E3%81%AE%E7%84%A1%E9%99%90%E3%83%9B%E3%83%86%E3%83%AB%E3%81%AE%E3%83%91%E3%83%A9%E3%83%89%E3%83%83%E3%82%AF%E3%82%B9
ヒルベルトの無限ホテルのパラドックス
(抜粋)
パラドックスの内容
客室が無限にあるホテルを考える。
(引用終り)
以上
521
(1): 現代数学の系譜 雑談 ◆e.a0E5TtKE 2019/11/28(木)21:05 ID:QdpmOFrx(7/7) AAS
>>519 タイポ訂正

 右の|||・・・→{{{・・・ に 取り替えると
  ↓
 右の|||・・・→}}}・・・ に 取り替えると

分かると思うが(^^;
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 2.425s*