[過去ログ] 現代数学の系譜 カントル 超限集合論 (1002レス)
上下前次1-新
抽出解除 必死チェッカー(本家) (べ) 自ID レス栞 あぼーん
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
805: 現代数学の系譜 雑談 ◆e.a0E5TtKE 2019/12/16(月)07:15 ID:IdN2Nyfe(1) AAS
(>>747より)
http://www.kurims.kyoto-u.ac.jp/~kenkyubu/zengaku/18/terui-zengaku2018.pdf
第7回
日時: 2018年6月1日(金)
16:30−18:00
場所: 数理解析研究所 420号室
講師: 照井 一成 准教授
題目: NASH村の命名規則:整列擬順序の理論へ
(抜粋)
定義 2.2
( X, =< )を全順序とする。Xに無限降下列
a0 > a1 > a2 > ・・・ (ai ∈ X)
が存在しないとき、( X, =< )を整列順序という。
別の言い方をすれば、整列順序とは空でないどんな部分集合 Y ⊆ X も最小元を持つよう
な全順序のことである。どんな集合上にも整列順序をいれられるというのが Zermelo の整列定理である。
これは選択公理と同値である。
(引用終り)
あほサルが、(>>636)
”∈-loopsは、正則性公理とは矛盾しますけどね
「集合のいかなる∈列も有限長で終わる」
というのが正則性公理ですから
(それゆえ「基礎の公理」とも呼ばれる)”
と、あほ発言
笑えるわ(^^
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.043s