[過去ログ] 現代数学の系譜 カントル 超限集合論 (1002レス)
上下前次1-新
抽出解除 必死チェッカー(本家) (べ) 自ID レス栞 あぼーん
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
127(3): 2019/10/06(日)09:49 ID:Gc2q5hFd(1/4) AAS
>>110
> で、N={Φ, {Φ}, {{Φ}}, …}で、自然数の集合Nができるけど
> 無限公理で最初は、Nよりも大きな集合ができるんですよね、確か(下記wiki)
>
> それを、最小の無限集合に絞って小さくする操作が必要です
> 最小の無限集合に絞った結果、Nには有限の元nしか含まれないものができる
>
そうです。
ωの存在を公理としても良いけど公理はなるべく簡潔である方が好まれるのでそのようにしています。
そうしないといけないわけではありませんが。
具体的には例えば
ω' を
0∈ω' 、n∈ω' ⇒ n+1∈ω'
を満たすものに取れる。(∵無限公理)
ωを
ω={x∈ω' | xは有限集合かつ順序数}
と置くとωは自然数全体からなる集合となる。(∵分出公理)
QED.
のように証明できます。
ZFはBGより対象の範囲が狭く公理も弱いのでこのような構成になります。
BGなら>>18のようにもっと直接的に行けます。
(無限公理ももっと弱く取れる)
もしΩの存在も示せるというなら示してください。
それ以前にまずΩを定義して下さい。
178: 2019/10/06(日)18:31 ID:Gc2q5hFd(2/4) AAS
>>162
> >>151 補足
> ツェルメロの自然数構成で
> 0:Φ
> 1:{Φ}
> 2:{{Φ}}
> ・
> ・
> n:{・・{Φ}・・} n重
> これで、全ての有限の自然数は構成できる
> 無限公理で、Nとωが出来たあとに、
> ω:{・・{Φ}・・} ω重 (ωは、下記のwikipedia定義に従う)
> と定義すれば良い
> 下記、順序数「すべての自然数が並び終えると、次に来るのが最小の超限順序数 ω である」
> 但し、下記”順序型というアイデア”を使う
> QED
と定義すれば良いって定義になってないでしょ?
この場合
X∈Ω
と同値であるXについての条件を書き下さねばなりません。
それはなんですか?
アイデアがあるならそれに従って定義を書き下してください。このアイデアにそってやればできるなんて証明は通用しません。
184(1): 2019/10/06(日)20:30 ID:Gc2q5hFd(3/4) AAS
>>182
以上ってまさかこれで>>162の証明の不足部分が補えたという意味?
ではないよね?
187(1): 2019/10/06(日)20:41 ID:Gc2q5hFd(4/4) AAS
>>186
え?>>185がなんですか?
>>162の証明の不足部分はまだ一つも埋められてませんよ?
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.044s