[過去ログ] 純粋・応用数学・数学隣接分野(含むガロア理論)11 (1002レス)
前次1-
抽出解除 レス栞

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
681
(2): 2022/12/12(月)07:27 ID:o5L78qQF(3/10) AAS
HはGの部分群であれば任意で、Hの作用でちょうど不変になる式を作れば同様。
クロネッカー・ウェーバーの定理より
Q上の巡回(より広くアーベル)方程式は本質的にこのタイプに限られる。


n=31, H={1,5,6,25,26,30}のときG/Hは5次の巡回群。
α=Σ_{k∈H}σ_k(ζ_31)
とおくとαはHで不変で、次の巡回方程式をみたす。
x^5+x^4-12 x^3-21 x^2+x+5
685: 2022/12/12(月)07:38 ID:TUjlnc/t(6/15) AAS
>>680-682
いわれてみればごもっともなんですが、
「三角関数のn倍角操作の不動点で遊べるじゃん!」
といまさらながら気づいた次第ですw

>>ああ、ヤバい・・・整数論沼にハマったか?
>楽しんでおられるようで何よりです。

ありがとうございます
ということで今日はこの曲(古っ!)
https://www.youtube.com/watch?v=RJJ0QsYNJfg&ab_channel=S%C3%B2chuJulia
695
(2): 2022/12/12(月)19:37 ID:o5L78qQF(6/10) AAS
>>681
p=10n+1型の素数のとき、ζ_pの値から5次巡回方程式を作ることができる。
一方、これらとは別に
ζ_25の値からも5次巡回方程式が作れる。

ζ_25+ζ_25^7+ζ_25^18+ζ_25^24 を根の一つとして持つ方程式
x^5-10 x^3+5 x^2+10 x+1=0.
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.328s*