[過去ログ] 純粋・応用数学・数学隣接分野(含むガロア理論)11 (1002レス)
上下前次1-新
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
680(1): 2022/12/12(月)07:26 ID:o5L78qQF(2/10) AAS
円分体のガロア群
G=Gal(Q(ζ_n)/Q)は(Z/nZ)^*に同型で
ガロア群の作用は k∈(Z/nZ)^*に対して
σ_k(ζ_n)=ζ_n^k で定まる。
ζ_n+ζ_n^{-1}は位数2の部分群Hで不変で
Gal(Q(ζ_n+ζ_n^{-1})/Q)=G/H.
n=11のときは、これが位数5の巡回群に同型。
(Z/nZ)^*の原始根(つまり生成元)gに対して
2cos(2πg/n)=f(2cos(2π/n))をみたす多項式fを
「巡回函数」と言ってるのだと思う。
省2
681(2): 2022/12/12(月)07:27 ID:o5L78qQF(3/10) AAS
HはGの部分群であれば任意で、Hの作用でちょうど不変になる式を作れば同様。
クロネッカー・ウェーバーの定理より
Q上の巡回(より広くアーベル)方程式は本質的にこのタイプに限られる。
例
n=31, H={1,5,6,25,26,30}のときG/Hは5次の巡回群。
α=Σ_{k∈H}σ_k(ζ_31)
とおくとαはHで不変で、次の巡回方程式をみたす。
x^5+x^4-12 x^3-21 x^2+x+5
682(1): 2022/12/12(月)07:30 ID:o5L78qQF(4/10) AAS
>>677
pべきの場合はどうなるんだ?とは、わたしも昨日
少し頭をよぎりました。
>ああ、ヤバい・・・整数論沼にハマったか?
楽しんでおられるようで何よりです。
683: 2022/12/12(月)07:30 ID:TUjlnc/t(5/15) AAS
>>679
>・(Z/nZ)の要素と加法と(Z/nZ)×の要素と乗法を、それぞれ説明せよ
前者はアホでも分かる、後者はアホでないなら分かる
684(1): 2022/12/12(月)07:37 ID:o5L78qQF(5/10) AAS
巡回函数を作るより、(Z/nZ)^*の乗法作用を使った方が見通しがいい
こういうのがアーベル体の構成とか、ガロア拡大でもいいが
保型函数のような「よい」函数の特殊値で拡大体を構成
することのご利益の初歩的な例。
685: 2022/12/12(月)07:38 ID:TUjlnc/t(6/15) AAS
>>680-682
いわれてみればごもっともなんですが、
「三角関数のn倍角操作の不動点で遊べるじゃん!」
といまさらながら気づいた次第ですw
>>ああ、ヤバい・・・整数論沼にハマったか?
>楽しんでおられるようで何よりです。
ありがとうございます
ということで今日はこの曲(古っ!)
https://www.youtube.com/watch?v=RJJ0QsYNJfg&ab_channel=S%C3%B2chuJulia
686: 2022/12/12(月)07:41 ID:TUjlnc/t(7/15) AAS
>>684
おっしゃる通りと思いますが
・・・なにぶんにもハイハイから始めないと歩けない性分で
もう少々お待ちくださいw
687(1): 現代数学の系譜 雑談 ◆yH25M02vWFhP 2022/12/12(月)08:07 ID:qR3y03w/(3/6) AAS
>>678
>何かの5乗根にガロア群を作用させるとζ_5が出てくる。
>ζ_5はQ(ζ_11)には含まれないから矛盾する。
どうもです
質問で悪いが
1)”作用させる”は、不正確な表現では?
意味がとれない
2)そもそもは、
32x^5+16x^4-32x^3-12x^2+6x+1=0 >>617 の可解性だった
この5次方程式を解くのに、5乗根が必要ないという主張ですか?
省12
688(1): 2022/12/12(月)09:49 ID:PEfbYqO8(1/3) AAS
>>687
>”作用させる”は、不正確な表現では?意味がとれない
ガロア群を理解してれば意味取れるが、何か?
>そもそもは、
>32x^5+16x^4-32x^3-12x^2+6x+1=0 の可解性だった
>この5次方程式を解くのに、5乗根が必要ないという主張ですか?
定義に基づいて文章を論理的に解読しないから、似て非なる文章と誤解する
>あと、ζ_5を含んでも、方程式の可解性には影響しないし、
>ラグランジュ・ソルベントで、ζ_5を使うんでしょ?
途中で出るから、最後のガロア拡大体にも出る、
省16
689(2): 現代数学の系譜 雑談 ◆yH25M02vWFhP 2022/12/12(月)10:49 ID:Zf32nHrU(1/4) AAS
>>688
スレ主です
これは、落ちこぼれ1号のおサルさん>>5だね
>>”作用させる”は、不正確な表現では?意味がとれない
> ガロア群を理解してれば意味取れるが、何か?
ゴマカシだね
数学では、まずは”作用させる”について、自分の主張での意味や定義を述べる
その上で、”ガロア群を理解してれば意味取れる”はありだが
そもそも、自分の主張での意味や定義を述べられないのはダメだよ
ガロア理論を、いま代数方程式の可解性の問題に限定して
省29
690(1): 2022/12/12(月)11:13 ID:PEfbYqO8(2/3) AAS
>>689
>落ちこぼれ1号だね
0号🐒がなんかキャッキャ言っとる
>ゴマカシだね
>またゴマカス
じゃ誤魔化し無しの直球勝負
2号さんのクロネッカー=ウェーバーの定理から
Q上のガロア群がアーベル群である代数体は
ある1の元を有理数体Qに添加した体"の部分体"である
ここで""内を取っ払ったのが0号君
省5
691(1): 現代数学の系譜 雑談 ◆yH25M02vWFhP 2022/12/12(月)11:54 ID:Zf32nHrU(2/4) AAS
>>690
詭弁と論点ずらし
そればっかりw
だからさ、そういう世間ずれした
ディベートもどきの論法
それは、なんとかヒロユキ氏が得意かもしれないが
それって、数学では有害無益
それやって、自分をゴマカスようになると
数学での進歩が止まるよ
692: 2022/12/12(月)12:27 ID:PEfbYqO8(3/3) AAS
>>691
反論不能だと、
「詭弁」「論点ずらし」「ディベート」
と絶叫発狂w
ビント外れの詭弁ディベートで
誰彼なくマウントしたがる🐒
それが落ちこぼれ0号の1
まさに、数学板のひろゆき
693(3): 現代数学の系譜 雑談 ◆yH25M02vWFhP 2022/12/12(月)18:25 ID:Zf32nHrU(3/4) AAS
>>689 追加
>再度問う
>「cos(2π/11)のべき根を使った表現で
> 5乗根なしだと、5次式にならないのではないの?」
1)下記、元吉文男氏 巡回群をガロア群に持つ 5 次方程式の判別とその解法は、旧ガロアすれでも取り上げたことがある
ここで、”素数次既約方程式が代数的に可解であることの必要十分条件は、その任意の 2 根によって根が分離できることである”
とあります。ガロア第一論文の最後の定理ですね。
だから、可解な既約5次方程式(正規かつ分離)の最小分解体は、基礎体Qとして、Q(αi,αj) i≠j i,J = 1~5
つまり、5根全部を必要としないってことですね。うっかりしていました。昨晩気づいたがw
2)あと、下記「五次方程式の解の公式の存在条件」(長野県木曽青峰高校)
省20
694: 現代数学の系譜 雑談 ◆yH25M02vWFhP 2022/12/12(月)18:26 ID:Zf32nHrU(4/4) AAS
>>693
つづき
https://www.nagano-c.ed.jp/seiho/intro/risuka/
長野県木曽青峰高等学校 理数科
https://www.nagano-c.ed.jp/seiho/intro/risuka/kadaikenq/2014kadaikenkyuu.htm
平成26年度課題研究
1 5次方程式の解の公式の存在条件
https://www.nagano-c.ed.jp/seiho/intro/risuka/kadaikenq/paper/2014/2014-1.pdf
五次方程式の解の公式の存在条件
研究者 小垣外蘭南 下村晴喜
省4
695(2): 2022/12/12(月)19:37 ID:o5L78qQF(6/10) AAS
>>681
p=10n+1型の素数のとき、ζ_pの値から5次巡回方程式を作ることができる。
一方、これらとは別に
ζ_25の値からも5次巡回方程式が作れる。
ζ_25+ζ_25^7+ζ_25^18+ζ_25^24 を根の一つとして持つ方程式
x^5-10 x^3+5 x^2+10 x+1=0.
696: 2022/12/12(月)19:38 ID:TUjlnc/t(8/15) AAS
>>693
>”素数次既約方程式が代数的に可解であることの必要十分条件は、
> その任意の 2 根によって根が分離できることである”
なんでだかわかる?
ヒント:円分拡大とクンマー拡大
一方で「任意の1根で根が分離できる」おめでたい場合がある
ズバリ、巡回拡大でOKな場合 これが問題
697(1): 2022/12/12(月)19:50 ID:TUjlnc/t(9/15) AAS
ところで、ついうっかりと
「ガロア理論の頂を踏む」 石井俊全
買っちまったw
これ、いい本だわw
半分ぐらい読んだけど
そういや、
5次以上の交代群が可解でないことの証明で
交代群が長さ3の巡回置換で生成できて
次数が3+2以上なら長さ3の任意の巡回置換が
長さ3の巡回置換の交換子積として実現できる
省1
698(4): 現代数学の系譜 雑談 ◆yH25M02vWFhP 2022/12/12(月)20:57 ID:qR3y03w/(4/6) AAS
>>697
>「ガロア理論の頂を踏む」 石井俊全
>買っちまったw
ご苦労さまです
私も持っている(書棚のこやしですが)
私のは、2013/09/26 第2刷です
以前旧ガロアスレで、C++さんがこの本の記述で質問したときに、
自分の本を見て答えたら「古い(改訂がある)」と言われましたね
いま見ると、下記の(初版~7刷)正誤表 20220614 現在があるね
多分それ7刷だな
省26
699(1): 2022/12/12(月)21:16 ID:TUjlnc/t(10/15) AAS
>>698
>> 5次以上の交代群が可解でないことの証明で
>>交代群が長さ3の巡回置換で生成できて
>>次数が3+2以上なら長さ3の任意の巡回置換が
>>長さ3の巡回置換の交換子積として実現できる
>>「トリック」を使ってたって、今思い出したよw
> そうそう そこ有名どころですね
> 大概の本には書いてある
でも、正規部分群の定義のaH=Haの=を
同型と読んじゃう人にはワケワカランでしょ
省4
上下前次1-新書関写板覧索設栞歴
あと 303 レスあります
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.133s*