ガロア第一論文と乗数イデアル他関連資料スレ18 (458レス)
前次1-
抽出解除 レス栞

リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
228
(2): 暇人 [] 06/28(土)08:38 ID:4S+Arcik(6/23)
>>227
ステップ3:解の表現

f(x) の解は L の元であり、L は K から四則演算(体の基本演算)とべき根の添加の繰り返しで構成される。
各べき根 α は x^ni−a=0 の解であり、a∈Ki。
これを繰り返すことで、f(x) の根は K の元を用いた四則演算とべき根で表現できる。
229
(2): 暇人 [] 06/28(土)08:41 ID:4S+Arcik(7/23)
>>225
補足:原始根の添加
(注:ここの箇所はGrokの文章を修正している
修正点1:元の文ではステップ1と2の間にこの文章があったのを補足として後ろにもってきた
修正点2:方程式x^ni−1を(x^ni−1)/(x-1)に修正
修正点3:元の文は「ζ_ni は方程式 …の解として得られる。(これはべき根の追加)」で終わっているが
このままだと循環論法なので、以下文章を追加した)

もし Ki が1の原始 ni 乗根 ζ‗ni を含まない場合、まず Ki(ζ‗ni) を構成する。
体の標数が ni と互いに素であれば、Ki(ζ‗ni)/Ki は巡回拡大であり、
ζ_ni は方程式 (x^ni−1)/(x-1)=0 の解として得られる。
(x^ni−1)/(x-1)のガロア群は(Z/ni)×と同型であり、可解群であるので
体Kiの標数が 0 もしくは (Z/ni)×の位数と素であるなら、
>>226-228のステップ1、2,3により、上記の方程式の解が
K の元を用いた四則演算とべき根で表現できる。
(注:(Z/ni)×はZ/niと異なる)
234
(1): 暇人 [] 06/28(土)08:47 ID:4S+Arcik(12/23)
>>224

結論
十分性:>>225-229 ガロア群 Gal(L/K) が可解群ならば、解は四則演算とべき根で表せる。これは、正規系列に沿った巡回拡大がべき根の添加で構成できるため。
必要性:>>230-232 解が四則演算とべき根で表せるならば、ガロア群は可解群である。これは、べき根の添加による拡大のガロア群が可解であるため。

よって、定理が証明された。
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.032s