フェルマーの最終定理の証明 (856レス)
フェルマーの最終定理の証明 http://rio2016.5ch.net/test/read.cgi/math/1745314067/
上
下
前次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
レス栞
リロード規制
です。10分ほどで解除するので、
他のブラウザ
へ避難してください。
30: 与作 [] 2025/04/26(土) 12:39:30.31 ID:H33hoPN1 nが奇素数のとき、X^n+Y^n=Z^nは自然数解を持たない。 X^n+Y^n=Z^nをy^n=(x+1)^n-x^n…(1)とおく。(y,xは有理数) (1)を(y-1)(y^(n-1)+…+y+1)=kn(x^(n-1)+…+x)/k…(2)とおく。 (2)は(y-1)=nのとき、成立たないので、(y-1)=knでも成立たない。 ∴nが奇素数のとき、X^n+Y^n=Z^nは自然数解を持たない。 http://rio2016.5ch.net/test/read.cgi/math/1745314067/30
49: 与作 [] 2025/04/30(水) 19:13:30.31 ID:7RwlV5s5 3*4=2*6ならば、3*4=k2*6/kとなる。 http://rio2016.5ch.net/test/read.cgi/math/1745314067/49
83: 与作 [] 2025/05/05(月) 21:38:37.31 ID:PMM0z6OT nが奇素数のとき、X^n+Y^n=Z^nは自然数解を持たない。 X^n+Y^n=Z^nをy^n=(x+1)^n-x^n…(1)とおく。(y,xは有理数) (1)を(y-1)(y^(n-1)+…+y+1)=kn(x^(n-1)+…+x)/k…(2)とおく。 (2)はk=1のとき、(y-1)=n、(y^(n-1)+…+y+1)≠(x^(n-1)+…+x)となる (2)はk=1のとき、成立たないので、k=1以外のときも成立たない。 ∴nが奇素数のとき、X^n+Y^n=Z^nは自然数解を持たない。 http://rio2016.5ch.net/test/read.cgi/math/1745314067/83
178: 与作 [] 2025/06/06(金) 13:51:33.31 ID:5oFKOVi9 n=2のとき、X^n+Y^n=Z^nは自然数解を無数に持つ。 X^2+Y^2=Z^2をy^2=(x+1)^2-x^2…(1)とおく。(y,xは有理数) (1)を(y-1)(y+1)=k2x/k…(2)とおく。 (2)はk=1のとき、(y-1)=2、(y+1)=xとなり、成立つ。 (2)はk/k=1なので、成立つか、成立たないかは、k=1以外でも同じ。 ∴n=2のとき、X^n+Y^n=Z^nは自然数解を無数に持つ。 http://rio2016.5ch.net/test/read.cgi/math/1745314067/178
181: 与作 [] 2025/06/07(土) 13:04:11.31 ID:2GASwNQI n=2のとき、X^n+Y^n=Z^nは自然数解を無数に持つ。 X^2+Y^2=Z^2をy^2=(x+1)^2-x^2…(1)とおく。(y,xは有理数) (1)を(y-1)(y+1)=k2x/k…(2)とおく。 (2)は(y-1)=2のとき、(y+1)=xとなる。(k=1) (2)はk/k=1なので、kが1以外の有理数のときも、成立つ。 ∴n=2のとき、X^n+Y^n=Z^nは自然数解を無数に持つ。 http://rio2016.5ch.net/test/read.cgi/math/1745314067/181
197: 与作 [] 2025/06/12(木) 20:37:12.31 ID:NUqockL+ (1)を(y-1)(y^2+y+1)=3(x^2+x)…(2)とおく。 (2)は(y-1)=3のとき、(y^2+y+1)=(x^2+x)とならない。 (2)を(y-1)(y^2+y+1)=k3(x^2+x)/k…(3)とおく。 (3)は(y-1)=k3のとき、(y^2+y+1)=(x^2+x)/kとならない。 http://rio2016.5ch.net/test/read.cgi/math/1745314067/197
319: 与作 [] 2025/07/06(日) 10:14:46.31 ID:HtrH3QI5 n=2のとき、X^n+Y^n=Z^nは自然数解を無数に持つ。 X^2+Y^2=Z^2をy^2=(x+1)^2-x^2…(1)とおく。(y,xは有理数) (1)を(y-1)(y+1)=k2x/k…(2)とおく。 (2)はk=1のとき成立つので、k=1以外でも成立つ。 ∴n=2のとき、X^n+Y^n=Z^nは自然数解を無数に持つ。 http://rio2016.5ch.net/test/read.cgi/math/1745314067/319
339: 与作 [] 2025/07/12(土) 21:42:06.31 ID:s3WFIjrV n=3のとき、X^n+Y^n=Z^nは自然数解を持たない。 X^3+Y^3=Z^3をy^3=(x+1)^3-x^3…(1)とおく。(y,xは有理数) (1)を(y-1)(y^2+y+1)=k3(x^2+x)/k…(2)とおく。 (2)が成立つかは、kの値に依らない。 (2)は(y-1)=3のとき、(y^2+y+1)=(x^2+x)とならない。 ∴n=3のとき、X^n+Y^n=Z^nは自然数解を持たない。 http://rio2016.5ch.net/test/read.cgi/math/1745314067/339
367: 132人目の素数さん [] 2025/07/17(木) 11:35:58.31 ID:88t231TB f(x) f(x) =(a_0/2+?_(k=1)^∞??a_k cos(kx)+? ?_(k=1)^∞??b_k sin(kx) ?)(a_0/2+?_(k=1)^∞??a_k cos(kx)+? ?_(k=1)^∞??b_k sin(kx) ?) =?a_0?^2/4+a_0/2 ?_(k=1)^∞??a_k cos(kx) ?+a_0/2 ?_(k=1)^∞??b_k sin(kx) ? +a_0/2 ?_(k=1)^∞??a_k cos(kx)+? (?_(k=1)^∞??a_k cos(kx) ?)^2+?_(k=1)^∞??a_k cos(kx) ? ?_(k=1)^∞??b_k sin(kx) ? +a_0/2 ?_(k=1)^∞??b_k sin(kx)+? ?_(k=1)^∞??a_k cos(kx) ? ?_(k=1)^∞??b_k sin(kx) ?+(?_(k=1)^∞??b_k sin(kx) ?)^2 ∫_(-π)^π??cos?(mx)dx=? 0, ∫_(-π)^π??sin(mx)dx=? 0, ∫_(-π)^π??sin?(mx) cos?(nx)dx=0? http://rio2016.5ch.net/test/read.cgi/math/1745314067/367
529: 132人目の素数さん [] 2025/07/28(月) 12:55:39.31 ID:Vsf8XHSj E(t)=Ri(t)+1/C ∫?i(t) dt i(t)=dq(t)/dt ∫?dq(t)/dt dt=q(t) E(t)=R dq(t)/dt+q(t)/C L[Rq^' ]=RsQ(s)-Rq(0)=RsQ(s) L[q(t)/C]=Q(s)/C L[E]=E/s E/s=RsQ(s)+Q(s)/C=Q(s)(Rs+1/C) Q(s)= E/s 1/(Rs+1/C)=E/s(Rs+1/C) =(E/R)/s(s+1/CR) =E/R 1/s(s+1/CR) 1/s(s+1/CR) =A/s+B/(s+1/CR) 1=A(s+1/CR)+Bs s=0⇒A/CR=1 A=CR s=-1/CR⇒-B 1/CR=1 B=-CR Q(s)=E/R (A/s+B/(s+1/CR))=E/R (CR/s-CR/(s+1/CR))=CE/s-CE/(s+1/CR) L^(-1) [CE/s-CE/(s+1/CR)]=CE(L^(-1) [1/s-1/(s+1/CR)])=CE(1-e^(-1/CR t) ) http://rio2016.5ch.net/test/read.cgi/math/1745314067/529
622: 132人目の素数さん [] 2025/08/11(月) 15:12:37.31 ID:XI0wb1W4 x ?+ax ?+bx=0 ??? λ^2+aλ+b=0 λ=α, β ⇒ x= C_1 e^αt+C_2 e^βt λ=α (重解) ⇒ x= C_1 e^αt+C_2 te^βt λ=α±βi ⇒ x= e^αt (C_1 cos?(βt)+C_2 cos?(βt)) λ^2-μ=0 0^2-4(-μ)=4μ (?@)μ>0のときλ=±√μなので X= C_1 e^(√μ x)+C_2 e^(-√μ x) X^'= C_1 √μ e^(√μ x)-C_2 √μ e^(-√μ x) 境界条件 u_x (0,t)=u_x (1,t)=0より u_x (0,t)=X^' (0)= C_1 √μ e^0-C_2 √μ e^0=(C_1-C_2 ) √μ=0 μ>0なので C_1-C_2=0 C_1=C_2 u_x (1,t)=X^' (1)= C_1 √μ e^√μ-C_2 √μ e^(-√μ)=(C_1 e^√μ-C_2 e^(-√μ) ) √μ=0 C_1=C_2なので (C_1 e^√μ-C_1 e^(-√μ) ) √μ= C_1 (e^√μ-e^(-√μ) ) √μ=0 μ>0、e^√μ-e^(-√μ)≠0なのでC_1=C_2=0 (※e^√μ=e^(-√μ)となるのはμ=0のときだけ) X(x)=0 ∴u(x,t)=X(x)T(t)=0 (?A)μ=0のとき重解なので X= C_1 e^0x+C_2 xe^0x=C_1+C_2 x 境界条件 u_x (0,t)=u_x (1,t)=0より X^' (0)=X^' (1)= C_2=0 X=C_1 http://rio2016.5ch.net/test/read.cgi/math/1745314067/622
757: 与作 [] 2025/08/30(土) 15:11:57.31 ID:IcDbQgDC n=3のとき、X^n+Y^n=Z^nは自然数解を持たない。 X^3+Y^3=Z^3をy^3=(x+1)^3-x^3…(1)とおく。(y,xは有理数) (1)を(y-1)(y^2+y+1)=3(x^2+x)…(2)とおく。 (2)は(y-1)=3のとき、(y^2+y+1)=(x^2+x)とならない。 (2)は成立たないので、(y-1)(y^2+y+1)=k3(x^2+x)/kも成立たない。 ∴n=3のとき、X^n+Y^n=Z^nは自然数解を持たない。 http://rio2016.5ch.net/test/read.cgi/math/1745314067/757
804: 132人目の素数さん [] 2025/09/09(火) 05:22:30.31 ID:e/ezkyR1 y''+y=sin(2x) λ^2+1=0 λ=0±i y_0=C_1 cos(x)+C_2 sin(x) y_1=cos(x), y_2=sin(x) ?y_1?^'=-sin(x), ?y_2?^'=cos(x) W=|?( cos(x)@-sin(x) )?( sin(x) @ cos(x) )| =?cos?^2 (x)+?sin?^2 (x)=1 y_s (x)=-y_1 ∫?(y_2 R(x))/W dx+y_2 ∫?(y_1 R(x))/W dx =-cos(x) ∫?sin(x)sin(2x) dx+sin(x) ∫?cos(x)sin(2x) dx ∫?sin(2x)sin(x) dx=-1/2 ∫??cos(2x+x)-cos(2x-x) ? dx =-1/2 ∫??cos(3x)-cos(x) ? dx=-1/2?1/3 sin(3x)+1/2 sin(x) =-1/6 sin(3x)+1/2 sin(x) ∫?sin(2x)cos(x) dx=1/2 ∫??sin(2x+x)+sin(2x-x) ? dx =1/2 ∫??sin(3x)+sin(x) ? dx=1/2?(-1)/3 cos(3x)+(-1)/2 cos(x) =-1/6 cos(3x)-1/2 cos(x) y_s (x) =-cos(x)(-1/6 sin(3x)+1/2 sin(x))+sin(x)(-1/6 cos(3x)-1/2 cos(x)) =1/6 sin(3x)cos(x)-1/2 sin(x)cos(x)-1/6 cos(3x)sin(x)-1/2 sin(x)cos(x) =1/6 sin(3x-x)-sin(x)cos(x)=1/6 sin(2x)-1/2 sin(2x) =-1/3 sin(2x) ∴y=C_1 cos(x)+C_2 sin(x)-1/3 sin(2x) http://rio2016.5ch.net/test/read.cgi/math/1745314067/804
メモ帳
(0/65535文字)
上
下
前次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.037s