フェルマーの最終定理の証明 (850レス)
フェルマーの最終定理の証明 http://rio2016.5ch.net/test/read.cgi/math/1745314067/
上
下
前次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
レス栞
リロード規制
です。10分ほどで解除するので、
他のブラウザ
へ避難してください。
132: 与作 [] 2025/05/23(金) 10:16:25.09 ID:y1H5CyP9 n=2のとき、X^n+Y^n=Z^nは自然数解を無数に持つ。 X^2+Y^2=Z^2をy^2=(x+1)^2-x^2…(1)とおく。(y,xは有理数) (1)を(y-1)(y+1)=2x…(2)とおく。 (2)は(y-1)=2、y=3のとき、(y+1)=(3+1)=xが成立つ。 (2)を(y-1)(y+1)=k2x/k…(3)とおく。 (3)はk/k=1なので、(y-1)=k2のとき、(y+1)=x/kが成立つ。 ∴n=2のとき、X^n+Y^n=Z^nは自然数解を無数に持つ。 http://rio2016.5ch.net/test/read.cgi/math/1745314067/132
187: 与作 [] 2025/06/07(土) 19:40:31.09 ID:2GASwNQI n=2のとき、X^n+Y^n=Z^nは自然数解を無数に持つ。 X^2+Y^2=Z^2をy^2=(x+1)^2-x^2…(1)とおく。(y,xは有理数) (1)を(y-1)(y+1)=2x…(2)とおく。 (2)は(y-1)=2のとき、(y+1)=xで成立つ。 (2)を(y-1)(y+1)=k2x/k…(3)とおく。 (3)は(y-1)=k2のとき、(y+1)=x/kで成立つ。 ∴n=2のとき、X^n+Y^n=Z^nは自然数解を無数に持つ。 http://rio2016.5ch.net/test/read.cgi/math/1745314067/187
277: 与作 [] 2025/07/02(水) 13:06:19.09 ID:oZn35gPk n=2のとき、X^n+Y^n=Z^nは自然数解を無数に持つ。 X^2+Y^2=Z^2をy^2=(x+1)^2-x^2…(1)とおく。(y,xは有理数) (1)を(y-1)(y+1)=2x…(2)とおく。 (2)は(y-1)=2のとき、2*4=2xとなる。 (2)の両辺は同じ形に因数分解できる。 ∴n=2のとき、X^n+Y^n=Z^nは自然数解を無数に持つ。 http://rio2016.5ch.net/test/read.cgi/math/1745314067/277
287: 与作 [] 2025/07/02(水) 16:32:29.09 ID:oZn35gPk ※同じ数は、同じ形に因数分解できる。 n=3のとき、X^n+Y^n=Z^nは自然数解を持たない。 X^3+Y^3=Z^3をy^3=(x+1)^3-x^3…(1)とおく。(y,xは有理数) (1)を(y-1)(y^2+y+1)=3(x^2+x)…(2)とおく。 (2)は(y-1)=3のとき、3*21≠3*(x^2+x)となる。 (2)の両辺は同じ形に因数分解できない。 ∴n=3のとき、X^n+Y^n=Z^nは自然数解を持たない。 http://rio2016.5ch.net/test/read.cgi/math/1745314067/287
322: 与作 [] 2025/07/09(水) 19:54:11.09 ID:mxpHSK/m >321 k=1 y=4 21≠(x^2+x) http://rio2016.5ch.net/test/read.cgi/math/1745314067/322
503: 与作 [] 2025/07/27(日) 14:45:06.09 ID:p6uh5pZX n=2のとき、X^n+Y^n=Z^nは自然数解を無数に持つ。 X^2+Y^2=Z^2をy^2=(x+1)^2-x^2…(1)とおく。(y,xは有理数) (1)を(y-1)(y+1)=k2x/k…(2)とおく。 (2)はk=1のとき、(y-1)=2、(y+1)=xとなる。 (2)はk=1のとき、成立つので、k=1以外でも成立つ。 ∴n=2のとき、X^n+Y^n=Z^nは自然数解を無数に持つ。 http://rio2016.5ch.net/test/read.cgi/math/1745314067/503
555: 132人目の素数さん [] 2025/08/01(金) 21:30:16.09 ID:2hip4JpQ ∂u/∂t=(∂u^2)/(∂x^2 ) (0<x<1, t>0) u_x (0,t)=u_x (1,t)=0 境界条件(断熱条件) u(x,0)=δ(x-1/2) 初期条件 u(x,t)=X(x)T(t) ∂u/∂t=XT^' ∂u/∂x=TX^' (∂u^2)/(∂x^2 )=∂/∂x TX^'=TX^'' XT^'= TX^'' T^'/T=X^''/X (T^' (t))/T(t) =(X^'' (x))/X(x) T^'/T=X^''/X=μ X^''/X=μ X^''-μX=0 ??? T^'/T=μ T^'=μT ??? http://rio2016.5ch.net/test/read.cgi/math/1745314067/555
669: 132人目の素数さん [] 2025/08/19(火) 22:12:17.09 ID:UNSSr5hH ∫_0^∞?(sin(x))/x dx ∂/∂s (e^(-sx) (sin(x))/x)=-xe^(-sx) (sin(x))/x=-e^(-sx) sin(x) F(s)=∫_0^∞??e^(-sx) (sin(x))/x? dx (s?0) dF(s)/ds=d/ds ∫_0^∞??e^(-sx) sin?(x)/x? dx =∫_0^∞??∂/ds e^(-sx) sin?(x)/x? dx =∫_0^∞??-xe^(-sx) sin?(x)/x? dx=-∫_0^∞??e^(-sx) sin?(x) ? dx =-∫_0^∞??-1/s (e^(-sx) )^' sin(x)? dx =∫_0^∞??1/s (e^(-sx) )^' sin(x)? dx =[1/s e^(-sx) sin(x)]_0^∞-1/s ∫_0^∞??e^(-sx) cos(x)? dx =0-1/s ∫_0^∞??e^(-sx) cos(x)? dx=-1/s ∫_0^∞???-1/s (e^(-sx) )?^' cos(x)? dx =1/s^2 ∫_0^∞??(e^(-sx) )^' cos(x)? dx =[1/s^2 e^(-sx) cos(x)]_0^∞-1/s^2 ∫_0^∞??-e^(-sx) sin(x)? dx =-1/s^2 +1/s^2 ∫_0^∞??e^(-sx) sin(x)? dx =-1/s^2 -1/s^2 dF(s)/ds (dF(s)/ds=-∫_0^∞??e^(-sx) sin?(x) ? dx) http://rio2016.5ch.net/test/read.cgi/math/1745314067/669
692: 与作 [] 2025/08/21(木) 10:22:53.09 ID:iG3fWWAA nが奇素数のとき、X^n+Y^n=Z^nは自然数解を持たない。 X^n+Y^n=Z^nをy^n=(x+1)^n-x^n…(1)とおく。(y,xは有理数) (1)を(y-1)(y^(n-1)+…+y+1)=n(x^(n-1)+…+x)…(2)とおく。 (2)は(y-1)=nのとき、(y^(n-1)+…+y+1)=(x^(n-1)+…+x)とならない。 (2)は成立たないので、(y-1)(y^(n-1)+…+y+1)=kn(x^(n-1)+…+x)/kも成立たない。 ∴nが奇素数のとき、X^n+Y^n=Z^nは自然数解を持たない。 http://rio2016.5ch.net/test/read.cgi/math/1745314067/692
767: 132人目の素数さん [] 2025/08/31(日) 13:03:58.09 ID:Bq8GdLuV M(θ)=E[e^θX ]=∫_(-∞)^∞??e^θx f(x)dx? M(θ)=E[e^θX ]=1/(√2π σ) ∫_(-∞)^∞??e^θx e^(-(x-μ)^2/(2σ^2 )) ? dx=1/(√2π σ) ∫_(-∞)^∞?e^(θx-(x-μ)^2/(2σ^2 )) dx θx-(x-μ)^2/(2σ^2 )=1/(2σ^2 ) (2σ^2 θx-(x-μ)^2 )=-1/(2σ^2 ) (? (x-μ)?^2-2σ^2 θx ) =-1/(2σ^2 ) (? x?^2+μ^2-2μx-2σ^2 θx ) =-1/(2σ^2 ) (? x?^2-2(μ+σ^2 θ)x+μ^2 ) =-1/(2σ^2 ) ((x-(μ+σ^2 θ))^2-(μ+σ^2 θ)^2+μ^2 ) =-1/(2σ^2 ) ((x-(μ+σ^2 θ))^2-(μ^2+2μσ^2 θ+σ^4 θ^2 )+μ^2 ) =-1/(2σ^2 ) ((x-(μ+σ^2 θ))^2-(2μσ^2 θ+σ^4 θ^2 ) ) =-(x-(μ+σ^2 θ))^2/(2σ^2 )+μθ+(σ^2 θ^2)/2 M(θ)=1/(√2π σ) ∫_(-∞)^∞?e^(θx-(x-μ)^2/(2σ^2 )) dx =1/(√2π σ) ∫_(-∞)^∞?e^((-(x-(μ+σ^2 θ))^2/(2σ^2 )+μθ+(σ^2 θ^2)/2) ) dx =1/(√2π σ) e^(μθ+(σ^2 θ^2)/2) ∫_(-∞)^∞?e^((-(x-(μ+σ^2 θ))^2/(2σ^2 )) ) dx t=(x-(μ+σ^2 θ))/(√2 σ) x=√2 σt+μ+σ^2 θ dx=√2 σdt (x-(μ+σ^2 θ))^2/(2σ^2 )=((x-(μ+σ^2 θ))/(√2 σ))^2=t^2 -∞<x?∞ ⇒-∞<t?∞ http://rio2016.5ch.net/test/read.cgi/math/1745314067/767
814: 132人目の素数さん [] 2025/09/10(水) 03:24:24.09 ID:wdfOyVp6 ∫[0→π/2]( tan(x) )^(1/n) dx (n≧2) ∫_0^(π/2)?(tan(x))^(1/n) dx を求める。 t=?sin?^2 x=(sin(x))^2 ?sin?^2 x=1-?cos?^2 x ?cos?^2 x=1-t dt=2sin(x)cos(x)dx=2√t √(1-t) dx dx=dt/(2√t √(1-t))=(t^(-1/2) (1-t)^(1/2))/2 dt (sin(x))^(1/n)=(√t)^(1/n)=t^(1/2n) (cos(x))^(1/n)=(√(1-t))^(1/n)=(1-t)^(1/2n) ∫_0^(π/2)?(tan(x))^(1/n) dx=∫_0^(π/2)?( (sin(x))^(1/n))/( (cos(x))^(1/n) ) dx=∫_0^(π/2)?( t^(1/2n))/(1-t)^(1/2n) (t^(-1/2) (1-t)^(1/2))/2 dt =1/2 ∫_0^(π/2)???t^(1/2n) (1-t)^(-1/2n) t?^(-1/2) (1-t)^(-1/2) ? dt =1/2 ∫_0^(π/2)??t^(1/2n-1/2) (1-t)^(-1/2n-1/2) ? dt =1/2 ∫_0^(π/2)??t^(1/2+1/2n-1) (1-t)^(1/2-1/2n-1) ? dt =1/2 ∫_0^(π/2)??t^(1/2+1/2n-1) (1-t)^(1/2-1/2n-1) ? dt (1/2) B(1/2+1/(2n), 1/2-1/(2n)) = (1/2) Γ( 1/2+1/(2n) ) Γ( 1/2-1/(2n) ) / Γ( 1/2+1/(2n) + 1/2-1/(2n) ) = (1/2) Γ(z) Γ(1-z) / Γ(1) = (1/2) ( π/sin(πz) ) / 0! = π/( 2 sin(πz) ) = π/( 2 sin(π/2+π/(2n)) ) = π/( 2 cos(π/(2n)) ). http://rio2016.5ch.net/test/read.cgi/math/1745314067/814
メモ帳
(0/65535文字)
上
下
前次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.026s