フェルマーの最終定理の証明 (850レス)
前次1-
抽出解除 レス栞

リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
132: 与作 [] 05/23(金)10:16:25.09 ID:y1H5CyP9(2/2)
n=2のとき、X^n+Y^n=Z^nは自然数解を無数に持つ。
X^2+Y^2=Z^2をy^2=(x+1)^2-x^2…(1)とおく。(y,xは有理数)
(1)を(y-1)(y+1)=2x…(2)とおく。
(2)は(y-1)=2、y=3のとき、(y+1)=(3+1)=xが成立つ。
(2)を(y-1)(y+1)=k2x/k…(3)とおく。
(3)はk/k=1なので、(y-1)=k2のとき、(y+1)=x/kが成立つ。
∴n=2のとき、X^n+Y^n=Z^nは自然数解を無数に持つ。
187: 与作 [] 06/07(土)19:40:31.09 ID:2GASwNQI(8/10)
n=2のとき、X^n+Y^n=Z^nは自然数解を無数に持つ。
X^2+Y^2=Z^2をy^2=(x+1)^2-x^2…(1)とおく。(y,xは有理数)
(1)を(y-1)(y+1)=2x…(2)とおく。
(2)は(y-1)=2のとき、(y+1)=xで成立つ。
(2)を(y-1)(y+1)=k2x/k…(3)とおく。
(3)は(y-1)=k2のとき、(y+1)=x/kで成立つ。
∴n=2のとき、X^n+Y^n=Z^nは自然数解を無数に持つ。
277: 与作 [] 07/02(水)13:06:19.09 ID:oZn35gPk(7/29)
n=2のとき、X^n+Y^n=Z^nは自然数解を無数に持つ。
X^2+Y^2=Z^2をy^2=(x+1)^2-x^2…(1)とおく。(y,xは有理数)
(1)を(y-1)(y+1)=2x…(2)とおく。
(2)は(y-1)=2のとき、2*4=2xとなる。
(2)の両辺は同じ形に因数分解できる。
∴n=2のとき、X^n+Y^n=Z^nは自然数解を無数に持つ。
287: 与作 [] 07/02(水)16:32:29.09 ID:oZn35gPk(17/29)
※同じ数は、同じ形に因数分解できる。

n=3のとき、X^n+Y^n=Z^nは自然数解を持たない。
X^3+Y^3=Z^3をy^3=(x+1)^3-x^3…(1)とおく。(y,xは有理数)
(1)を(y-1)(y^2+y+1)=3(x^2+x)…(2)とおく。
(2)は(y-1)=3のとき、3*21≠3*(x^2+x)となる。
(2)の両辺は同じ形に因数分解できない。
∴n=3のとき、X^n+Y^n=Z^nは自然数解を持たない。
322: 与作 [] 07/09(水)19:54:11.09 ID:mxpHSK/m(1)
>321
k=1
y=4
21≠(x^2+x)
503: 与作 [] 07/27(日)14:45:06.09 ID:p6uh5pZX(2/14)
n=2のとき、X^n+Y^n=Z^nは自然数解を無数に持つ。
X^2+Y^2=Z^2をy^2=(x+1)^2-x^2…(1)とおく。(y,xは有理数)
(1)を(y-1)(y+1)=k2x/k…(2)とおく。
(2)はk=1のとき、(y-1)=2、(y+1)=xとなる。
(2)はk=1のとき、成立つので、k=1以外でも成立つ。
∴n=2のとき、X^n+Y^n=Z^nは自然数解を無数に持つ。
555: 132人目の素数さん [] 08/01(金)21:30:16.09 ID:2hip4JpQ(7/8)
∂u/∂t=(∂u^2)/(∂x^2 ) (0<x<1, t>0)
u_x (0,t)=u_x (1,t)=0 境界条件(断熱条件)
u(x,0)=δ(x-1/2) 初期条件

u(x,t)=X(x)T(t)
∂u/∂t=XT^'
∂u/∂x=TX^' (∂u^2)/(∂x^2 )=∂/∂x TX^'=TX^''
XT^'= TX^'' T^'/T=X^''/X
(T^' (t))/T(t) =(X^'' (x))/X(x)
T^'/T=X^''/X=μ
X^''/X=μ X^''-μX=0 ???
T^'/T=μ T^'=μT ???
669: 132人目の素数さん [] 08/19(火)22:12:17.09 ID:UNSSr5hH(12/12)
∫_0^∞?(sin(x))/x dx
∂/∂s (e^(-sx) (sin(x))/x)=-xe^(-sx) (sin(x))/x=-e^(-sx) sin(x)

F(s)=∫_0^∞??e^(-sx) (sin(x))/x? dx (s?0)

dF(s)/ds=d/ds ∫_0^∞??e^(-sx) sin?(x)/x? dx
=∫_0^∞??∂/ds e^(-sx) sin?(x)/x? dx
=∫_0^∞??-xe^(-sx) sin?(x)/x? dx=-∫_0^∞??e^(-sx) sin?(x) ? dx
=-∫_0^∞??-1/s (e^(-sx) )^' sin(x)? dx
=∫_0^∞??1/s (e^(-sx) )^' sin(x)? dx
=[1/s e^(-sx) sin(x)]_0^∞-1/s ∫_0^∞??e^(-sx) cos(x)? dx
=0-1/s ∫_0^∞??e^(-sx) cos(x)? dx=-1/s ∫_0^∞???-1/s (e^(-sx) )?^' cos(x)? dx
=1/s^2 ∫_0^∞??(e^(-sx) )^' cos(x)? dx
=[1/s^2 e^(-sx) cos(x)]_0^∞-1/s^2 ∫_0^∞??-e^(-sx) sin(x)? dx
=-1/s^2 +1/s^2 ∫_0^∞??e^(-sx) sin(x)? dx
=-1/s^2 -1/s^2 dF(s)/ds (dF(s)/ds=-∫_0^∞??e^(-sx) sin?(x) ? dx)
692: 与作 [] 08/21(木)10:22:53.09 ID:iG3fWWAA(3/3)
nが奇素数のとき、X^n+Y^n=Z^nは自然数解を持たない。
X^n+Y^n=Z^nをy^n=(x+1)^n-x^n…(1)とおく。(y,xは有理数)
(1)を(y-1)(y^(n-1)+…+y+1)=n(x^(n-1)+…+x)…(2)とおく。
(2)は(y-1)=nのとき、(y^(n-1)+…+y+1)=(x^(n-1)+…+x)とならない。
(2)は成立たないので、(y-1)(y^(n-1)+…+y+1)=kn(x^(n-1)+…+x)/kも成立たない。
∴nが奇素数のとき、X^n+Y^n=Z^nは自然数解を持たない。
767: 132人目の素数さん [] 08/31(日)13:03:58.09 ID:Bq8GdLuV(3/6)
M(θ)=E[e^θX ]=∫_(-∞)^∞??e^θx f(x)dx?
M(θ)=E[e^θX ]=1/(√2π σ) ∫_(-∞)^∞??e^θx e^(-(x-μ)^2/(2σ^2 )) ? dx=1/(√2π σ) ∫_(-∞)^∞?e^(θx-(x-μ)^2/(2σ^2 )) dx
θx-(x-μ)^2/(2σ^2 )=1/(2σ^2 ) (2σ^2 θx-(x-μ)^2 )=-1/(2σ^2 ) (? (x-μ)?^2-2σ^2 θx )
=-1/(2σ^2 ) (? x?^2+μ^2-2μx-2σ^2 θx )
=-1/(2σ^2 ) (? x?^2-2(μ+σ^2 θ)x+μ^2 )
=-1/(2σ^2 ) ((x-(μ+σ^2 θ))^2-(μ+σ^2 θ)^2+μ^2 )
=-1/(2σ^2 ) ((x-(μ+σ^2 θ))^2-(μ^2+2μσ^2 θ+σ^4 θ^2 )+μ^2 )
=-1/(2σ^2 ) ((x-(μ+σ^2 θ))^2-(2μσ^2 θ+σ^4 θ^2 ) )
=-(x-(μ+σ^2 θ))^2/(2σ^2 )+μθ+(σ^2 θ^2)/2
M(θ)=1/(√2π σ) ∫_(-∞)^∞?e^(θx-(x-μ)^2/(2σ^2 )) dx
=1/(√2π σ) ∫_(-∞)^∞?e^((-(x-(μ+σ^2 θ))^2/(2σ^2 )+μθ+(σ^2 θ^2)/2) ) dx
=1/(√2π σ) e^(μθ+(σ^2 θ^2)/2) ∫_(-∞)^∞?e^((-(x-(μ+σ^2 θ))^2/(2σ^2 )) ) dx
t=(x-(μ+σ^2 θ))/(√2 σ) x=√2 σt+μ+σ^2 θ dx=√2 σdt
(x-(μ+σ^2 θ))^2/(2σ^2 )=((x-(μ+σ^2 θ))/(√2 σ))^2=t^2
-∞<x?∞ ⇒-∞<t?∞
814: 132人目の素数さん [] 09/10(水)03:24:24.09 ID:wdfOyVp6(1/3)
∫[0→π/2]( tan(x) )^(1/n) dx  (n≧2)
∫_0^(π/2)?(tan(x))^(1/n) dx を求める。
t=?sin?^2 x=(sin(x))^2
?sin?^2 x=1-?cos?^2 x ?cos?^2 x=1-t
dt=2sin(x)cos(x)dx=2√t √(1-t) dx
dx=dt/(2√t √(1-t))=(t^(-1/2) (1-t)^(1/2))/2 dt
(sin(x))^(1/n)=(√t)^(1/n)=t^(1/2n) (cos(x))^(1/n)=(√(1-t))^(1/n)=(1-t)^(1/2n)
∫_0^(π/2)?(tan(x))^(1/n) dx=∫_0^(π/2)?( (sin(x))^(1/n))/( (cos(x))^(1/n) ) dx=∫_0^(π/2)?( t^(1/2n))/(1-t)^(1/2n) (t^(-1/2) (1-t)^(1/2))/2 dt

=1/2 ∫_0^(π/2)???t^(1/2n) (1-t)^(-1/2n) t?^(-1/2) (1-t)^(-1/2) ? dt
=1/2 ∫_0^(π/2)??t^(1/2n-1/2) (1-t)^(-1/2n-1/2) ? dt
=1/2 ∫_0^(π/2)??t^(1/2+1/2n-1) (1-t)^(1/2-1/2n-1) ? dt
=1/2 ∫_0^(π/2)??t^(1/2+1/2n-1) (1-t)^(1/2-1/2n-1) ? dt
(1/2) B(1/2+1/(2n), 1/2-1/(2n))
= (1/2) Γ( 1/2+1/(2n) ) Γ( 1/2-1/(2n) ) / Γ( 1/2+1/(2n) + 1/2-1/(2n) )
= (1/2) Γ(z) Γ(1-z) / Γ(1)
= (1/2) ( π/sin(πz) ) / 0!
= π/( 2 sin(πz) )
= π/( 2 sin(π/2+π/(2n)) )
= π/( 2 cos(π/(2n)) ).
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.040s