スレタイ 箱入り無数目を語る部屋29(あほ二人の”アナグマの姿焼き"Part3w) (290レス)
前次1-
抽出解除 レス栞

リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
275
(2): 132人目の素数さん [sage] 07/21(月)15:50 ID:60RWf/A5(3/3)
2chスレ:math
>>236 まとめ

1)まず、列長さ有限Lのしっぽ同値類を考えると
 ・箱に一様分布の1〜mの整数を入れたとき
  全体Ω=m^L、一つの同値類の場合の数 m^(L-1)
  一つの同値類中の
  決定番号dが1からL-1までが 全体の1/m。決定番号d=Lが、全体の1-1/m
 ・箱に一様分布の区間[0,1]の実数を入れたとき
  全体Ω=[0,1]^L、一つの同値類の場合の数 [0,1]^(L-1)
  一つの同値類中の
  決定番号dが1からL-1までが 全体比で0。決定番号d=Lが、全体比で1

2)次に、列長さ可算無限でしっぽ同値類を考えると
 ・箱に一様分布の1〜mの整数を入れたとき
  全体Ω=m^∞、一つの同値類の場合の数 m^∞
  一つの同値類中の
  決定番号dが有限は、零集合をなす。決定番号d=∞が、全体Ωの殆どすべて。
 ・箱に一様分布の区間[0,1]の実数を入れたとき
  全体Ω=[0,1]^∞、一つの同値類の場合の数 [0,1]^∞
  一つの同値類中の
  決定番号d有限は 全体比で0(零集合)。決定番号d=∞が、殆どすべて

3)さて、これを踏まえて 箱入り無数目の決定番号による確率計算を検討しよう
 箱入り無数目では、列を100列作って 99列を開けて 未開の1列の決定番号と比較するという
2chスレ:math ご参照)
 いまこれを、抽象化すると 箱を開けた列の決定番号の最大値Dと
 未開列のまだ不明な決定番号dkとの比較を考えることになる
 ところが、このdkは 上記2)項の通り ∞に発散している量だから
 もし、最大値Dが有限ならば、
 『s^kの決定番号が他の列の決定番号どれよりも大きい確率は1/100に過ぎない』は、言えない
 よって、箱入り無数目の決定番号を使う数当て手法は、機能しない!■

以上
278
(1): 132人目の素数さん [] 07/21(月)23:42 ID:mqIGDCdy(3/5)
>>275
>1)まず、列長さ有限Lのしっぽ同値類を考えると
無駄。
列の長さは可算無限だから。

>一つの同値類中の決定番号d有限は 全体比で0(零集合)。決定番号d=∞が、殆どすべて
決定番号は自然数と定義されている。
よっていかなる自然数も有限値。つまり決定番号=有限値がすべて。

>このdkは 上記2)項の通り ∞に発散している量
決定番号は自然数と定義されている。
100列の決定番号は100個の自然数であり発散していない。

>『s^kの決定番号が他の列の決定番号どれよりも大きい確率は1/100に過ぎない』は、言えない
100列の決定番号は100個の自然数であり、自然数の全順序性から単独最大決定番号は1個以下(重複がある場合0個)。
よって100列のいずれかをランダム選択すれば単独最大決定番号を選ぶ確率はたかだか1/100が言える。

何度言っても言葉が通じないね 言語障害? 病院行きなよ ここにいても治らないよ
289: 132人目の素数さん [sage] 07/22(火)08:17 ID:SZi+F/1k(2/3)
>>275
2chスレ:math
>列長さ可算無限でしっぽ同値類を考えると・・・
>一つの同値類中の、「決定番号dが有限」は、零集合をなす。

はい 間違い
はい ●違い

一つの同値類中の、「決定番号dが有限」は、同値類全体をなす。

>決定番号d=∞が、全体Ωの殆どすべて。

はい 間違い
はい ●違い

決定番号dは自然数 したがって∞となることはあり得ない。

残念でした
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.014s