スレタイ 箱入り無数目を語る部屋29(あほ二人の”アナグマの姿焼き"Part3w) (290レス)
上下前次1-新
抽出解除 レス栞
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
172(1): 132人目の素数さん [sage] 06/10(火)18:26 ID:Dv67HRUE(1/2)
>>170
>「確率変数とは 試行の結果によって値が決まる変数を確率変数という」なのです
然り
>つまり、一つの試行で 一つ値が決まる ということ
然り
>つまり、一つの試行内では、一つ値が決まって その値は変化はしない
然り
>だが、別の試行では、別の値が決まる
然り
箱入り無数目で、試行の結果によって箱の中身の値が変わることはない
したがって、箱の中身は確率変数ではない
箱入り無数目で、試行の結果によって選ぶ列は変わる
したがって、回答者が選ぶ列は隔離変数である
箱入り無数目の回答者は一人でなくていい
一つの問題を使いまわせばいい
そして同時並行で不特定多数の回答者にいっぺんに選ばせればいい
試行がシーケンシャルでなければならない理由はない
現代数学の系譜 雑談 ◆yH25M02vWFhP は今ここで野垂れ死んだ
アーメン
179(4): 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 06/11(水)18:10 ID:181R6eWz(1)
>>171-174 & >>176-178
言いたいことは それだけ?
ならば、逝ってよし
>>170 つづき(確率論の基本事項の説明)
1)用語”確率変数”を、いましばし 追加説明する
上記 「2枚の硬貨」に即して説明する
事象は、>>164の通りで
{(裏、裏),(表、裏),(裏、表),(表、表)}の4通り。これに 表を1、 裏を0として
↓
{(0、0),(1、0),(0、1),(1、1)} これで 和を作ると 確率変数(実数との対応)が出来て
↓
{ X=0 , X=1 , X=1 , X=2 } となる(確率変数は関数で 本来X(1、1)=2と書くべき だが、面倒なので みな X=2と略記している)
2)ここから、全事象Ω={(裏、裏),(表、裏),(裏、表),(表、表)}
根源事象 (裏、裏),(表、裏),(裏、表),(表、表) の4つ
確率は、P(Ω)=1,
P(X=0)=1/4, P(X=1)=1/2, P(X=0)=1/4 となる
3)この P(X=0)=1/4, P(X=1)=1/2, P(X=0)=1/4 が、確率分布で
横軸 X=0、1、2 とし 縦軸に 1/4, 1/2, 1/4 をプロットすれば 確率分布の図ができる
4)試行との関係では、1つの試行で Ω={(裏、裏),(表、裏),(裏、表),(表、表)}のどれかが起きる
これを抽象的に表現したものが、確率変数と考えるとことができる
X=0は、(裏、裏)
X=1は、(表、裏),(裏、表)の2通り
X=2は、(表、表)
5)これを、箱入り無数目に当てはめてみよう
いま、1つの試行で
「2枚の硬貨」を使って、箱に X=0,1,2の数字を入れていくとする
例えば、(1,2,1,0,1,2,・・・)となったとしょう
各項の数は、箱の中で 出題者にしか分からない(回答者には まだ見せない)
>>8の重川一郎 2013年度前期 確率論基礎 https://www.math.kyoto-u.ac.jp/~ichiro/lectures/2013bpr.pdf
のように 確率変数に付番をつけると
X1=1,X2=2,X3=1,X4=0,X5=1,X6=2,・・・
となる
X1=1の X1は付番された確率変数だ。しかし、変数だからコロコロ変化するわけではない! 一つの試行では変化しない!!
別の試行においては、X1=2に変化したり X1=0になったりすることはありうる
6)そして、iid(独立同分布)を仮定すると、Xi i∈N たちは、すべて上記3)の確率分布 に従っている
よって
確率変数について、「変数だから 一つの試行中に コロコロ変化する」と妄想する 落ちコボレさんが二人いるw
しかし、それは妄想ですww ;p)
とりあえず、今回はここまで
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.019s