スレタイ 箱入り無数目を語る部屋29(あほ二人の”アナグマの姿焼き"Part3w) (340レス)
上下前次1-新
抽出解除 レス栞
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
158(2): 132人目の素数さん [] 06/09(月)06:51 ID:u17nGVrx(1)
>>154 補足
>戦略の実行過程にやや不明確な点が
1)数学において、実行可能か否か という判断基準を 持ち込むことはできない
選択公理が、人には実行不可能なことを是としているから
箱入り無数目(あるいは類似の100人数学者問題)を
数学パズルとして認めると公言する数学者が、もう一人いるらしい
2)しかし、実行可能という判断を 数学に持ち込めば、大混乱になる
そもそも、極限操作 lim →∞ は、有限時間では終わらない
一方、フルパワー選択公理を用いずとも、lim →∞ など 解析に必要な数学の操作は可能(下記ご参照)
要するに、”有限時間では終わらない”ことの多くを、選択公理以外でも 全部認めるのが現代数学なのです
3)一方、箱入り無数目を認めると、明らかに既存の数学と矛盾する部分があるのです
例えば、>>154の2)項の関数論の事項がある
また、確率論の多くの命題と矛盾を生じる
例えば 乱数理論で、可算無限の乱数を発生させて
s = (s1,s2,s3 ,・・・) なる数列を作ったときに
ある sd が、それ以外の値を用いて 確率1-ε で的中できるとなると、これは矛盾(他の数から予測できないのが乱数の定義だから、反例になる)
同様に、s = (s1,s2,s3 ,・・・) なる数列が、ある確率現象でiidを仮定したときの数列とすると
任意のsi の値は、他の数とは独立だから si 以外の数を使って 確率1-ε的中とすることも また矛盾
4)箱入り無数目のトリックは、”無数目”の部分にあって、多くの数学徒が知らない非正則分布(>>8)を、密かに使ってしまっていることにあるのです■
(参考)
https://ja.wikipedia.org/wiki/%E5%BE%93%E5%B1%9E%E9%81%B8%E6%8A%9E%E5%85%AC%E7%90%86
従属選択公理(英語: axiom of dependent choice; DCと略される)とは、選択公理(AC)の弱い形で、しかし実解析の大部分を行うのに十分な公理である。
これはパウル・ベルナイスによって1942年の、解析学を実行するのに必要な集合論的公理を検討する逆数学の論文で導入された。[a]
159(1): 132人目の素数さん [] 06/09(月)08:15 ID:BV7QkT7M(1)
>>158
>”有限時間では終わらない”ことの多くを、選択公理以外でも 全部認めるのが現代数学なのです
>一方、箱入り無数目を認めると、明らかに既存の数学と矛盾する部分があるのです
>例えば、確率論の多くの命題と矛盾を生じる
> 乱数理論で、可算無限の乱数を発生させて
> s = (s1,s2,s3 ,・・・) なる数列を作ったときに
> ある sd が、それ以外の値を用いて 確率1-ε で的中できる
> となると矛盾
もし
「乱数理論で、可算無限の乱数を発生させて
s = (s1,s2,s3 ,・・・) なる数列を作ったときに
ある sd が、それ以外の値を用いて 確率1-ε で的中できる」
というなら、もちろん矛盾である
そこで質問
箱入り無数目のどこで
「あるsdが、それ以外の値を用いて 確率1-ε で的中できる」
と述べている?
どこを読んでもそう書いてある箇所はないが
n列に分割すれば、それぞれの列について、ある箱が選べる
そしてそのうち箱の中身が代表列の項と一致しないのはたかだか1つ
だから、中身が代表列の項と一致する箱は少なくともn個中n−1個あり
したがって、箱をランダムに選べばそのような箱を選ぶ確率は1-1/n
nをいくらでも大きくすることによって 任意のε>0に対して
上記の箱を選ぶ確率を1-ε以内におさめることができる
上記は「ある箱」を特定していない
的中できる箱を確率1-εで選べる、といっている
つまり、確率事象は決められた箱の中身ではなく、回答者が選ぶ箱の番号である
ID:u17nGVrx は 記事の文章を誤読して、その誤読結果に対して
確率論と矛盾しているといってるだけ
誤読結果が確率論と矛盾するのはその通りだが
それは記事の内容とは異なるので
残念ながら無意味と言わざるを得ない
(完)
160(2): 132人目の素数さん [] 06/09(月)08:43 ID:DSuothyw(2/6)
>>158
>要するに、”有限時間では終わらない”ことの多くを、選択公理以外でも 全部認めるのが現代数学なのです
まーた口から出まかせ言ってらー
そもそも時間などという概念は存在しない 物理じゃないんだからw
>3)一方、箱入り無数目を認めると、明らかに既存の数学と矛盾する部分があるのです
「ある箱の中身を確率99/100以上で的中できる」と誤解しているだけのこと。
正しくは「99箱以上の当たりを含む100箱から当たり箱を確率99/100以上で的中できる」。
>4)箱入り無数目のトリックは、”無数目”の部分にあって、多くの数学徒が知らない非正則分布(>>8)を、密かに使ってしまっていることにあるのです■
分布も何も100列の決定番号は定数。
君、少しは人の話を聞いたら? 自閉症かい?
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.020s