スレタイ 箱入り無数目を語る部屋29(あほ二人の”アナグマの姿焼き"Part3w) (290レス)
スレタイ 箱入り無数目を語る部屋29(あほ二人の”アナグマの姿焼き"Part3w) http://rio2016.5ch.net/test/read.cgi/math/1736907570/
上
下
前次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
レス栞
リロード規制
です。10分ほどで解除するので、
他のブラウザ
へ避難してください。
274: 132人目の素数さん [sage] 2025/07/21(月) 15:50:06.63 ID:60RWf/A5 https://rio2016.5ch.net/test/read.cgi/math/1752265419/236 >>221 <決定番号の確率について> 1)決定番号の確率について考えよう まず、5列 s1,s2,s3 ,s4,s5 si | i=1〜5 は、コイントスで {0,1}が入る しっぽ同値 数列 s'1,s'2,s'3 ,s'4,s'5 で、しっぽ同値だと s'5=s5 だ だから、一つの同値類の場合の数は 2^4 で、全体Ωは 2^5 一つの同値類 2^4 で 決定番号1 とは、全ての列一致で つまり si=s'i | i=1〜4 (s5=s'5 は仮定されているとして) その確率 1/2^4 同様に 決定番号4以下 とは S4=s'4でさえ あれば良いので 1/2 よって、残り決定番号5の場合が、確率 1-1/2=1/2 2)列長さL(L>5)で、一つの同値類内で sL=s'L は満たされているとして 決定番号L-1以下 とは sL-1=s'L-1であれば良いので 1/2 よって、決定番号Lの場合が、確率 1-1/2=1/2 3)ここで、L→∞ を考えると 最後の箱は 無限の彼方に飛び去る (全体Ωは 2^∞ で発散する) つまり、無限の長い列において 有限決定番号dとは dから後の無限長のしっぽが全て一致している 即ち 1/2^∞ =0 の存在 (存在するが 測度0 つまり零集合の元) 4)いま、これを一般化して 2→m枚(1〜m)のカードを シャッフルして入れるとする 上記同様に、有限長L で、一つの同値類の場合の数は m^(L-1) で、全体Ωは m^L L→∞ で、無限の長い列において 有限決定番号dとは dから後の無限長のしっぽが全て一致している 即ち 1/m^∞ =0 の存在 (確率0の存在。存在するが 測度0 つまり零集合の元) 5)いよいよ、箱入り無数目と同じく 箱にランダムな実数を入れる 区間[0,1]の一様分布でr∈[0,1]を取る 有限長L で、この場合 しっぽ同値では 決定番号d=Lが全て L-1番目を含み それ以降の箱の一致確率は0 つまり、決定番号d<L が起きる確率0(∵ si=s'i となる確率0) L→∞ でも、上記と同様で 有限決定番号dは 確率0の存在。存在するが 測度0 つまり零集合の元 6)ダメ押しで、付番に拡大実数で+∞を導入しよう (はさみうちの原理) この場合において しっぽ同値で 決定番号d=+∞ がとれる 箱入り無数目と同じく 箱にランダムな実数を入れる 区間[0,1]の一様分布実数を入れる。決定番号d=+∞で終わり 決定番号dが有限の確率0(上記5)項と同じ) はさみうちの原理により、有限長さLを大きくした極限の場合と 拡大実数で+∞を導入した場合において はさまれる 箱入り無数目において 有限決定番号dは 確率0の存在。存在するが 測度0 つまり零集合の元!■ 箱入り無数目は、確率0で 99/100を導き 結局その確率は 0*99/100=0 (参考) https://ja.wikipedia.org/wiki/%E6%B8%AC%E5%BA%A6%E8%AB%96 測度論 可測集合 S が μ(S) = 0 であるとき零集合 (null set) という https://ja.wikipedia.org/wiki/%E6%8B%A1%E5%A4%A7%E5%AE%9F%E6%95%B0 拡大実数 通常の実数に正の無限大 +∞ と負の無限大 −∞ の2つを加えた体系 https://ja.wikipedia.org/wiki/%E3%81%AF%E3%81%95%E3%81%BF%E3%81%86%E3%81%A1%E3%81%AE%E5%8E%9F%E7%90%86 はさみうちの原理 極限に関する定理の一つ http://rio2016.5ch.net/test/read.cgi/math/1736907570/274
277: 132人目の素数さん [] 2025/07/21(月) 23:29:09.40 ID:mqIGDCdy >>274 >1)決定番号の確率について考えよう 無駄。 箱入り無数目の確率事象は列選択だから。 これは著者による定義だから君が勝手に変更したらダメ。 何度言っても言葉が通じないね 言語障害? 病院行きなよ ここにいても治らないよ http://rio2016.5ch.net/test/read.cgi/math/1736907570/277
288: 132人目の素数さん [sage] 2025/07/22(火) 08:10:26.38 ID:SZi+F/1k >>274 https://rio2016.5ch.net/test/read.cgi/math/1752265419/255 >L→∞ を考えると 最後の箱は 無限の彼方に飛び去る >(全体Ωは 2^∞ で発散する) >つまり、無限の長い列において 有限決定番号dとは >dから後の無限長のしっぽが全て一致している >即ち 1/2^∞ =0 の存在 >… >つまり、決定番号d<L が起きる確率0(∵ si=s'i となる確率0) はい 間違い はい ●違い 大学で測度を習ったことない人が必ずやらかす初歩的誤り 任意のd∈Nについて、決定番号dとなる確率は0ではなく非可測 ただし、このことは箱入り無数目では一切用いない なぜなら箱の中身は定数であって、試行によって変わる変数ではないから 試行で変わるのは、回答者が選択する列だけ 残念でした http://rio2016.5ch.net/test/read.cgi/math/1736907570/288
メモ帳
(0/65535文字)
上
下
前次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.013s