スレタイ 箱入り無数目を語る部屋29(あほ二人の”アナグマの姿焼き"Part3w) (290レス)
スレタイ 箱入り無数目を語る部屋29(あほ二人の”アナグマの姿焼き"Part3w) http://rio2016.5ch.net/test/read.cgi/math/1736907570/
上
下
前次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
レス栞
リロード規制
です。10分ほどで解除するので、
他のブラウザ
へ避難してください。
204: 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2025/06/14(土) 08:48:08.01 ID:036MevG8 >>199 補足 ”確率変数の定義 [定義] 標本空間Ω上の実数値関数 (各根元事象に実数を対応させたもの)を確率変数random variable という” を追加投稿します 分らない人は、百回音読してねw (参考) https://www.tmd.ac.jp/ 旧東京医科歯科大学(科学大) https://www.tmd.ac.jp/artsci/math/ 教養部 数学分野 Department of Mathematics 准教授 徳永 伸一 https://www.tmd.ac.jp/artsci/math/tokunaga-j.htm 学歴 1991年3月 東京大学教養学部基礎科学科第一 卒業 1993年3月 東京理科大学大学院理学系研究科数学専攻修士課程 終了 1996年3月 博士号取得(理学・東京理科大学) https://www.tmd.ac.jp/artsci/math/lec/tokunaga/statistics09_04.pdf 統計(医療統計)前期・第4回 確率変数と確率分布(2) 授業担当:徳永伸一 東京医科歯科大学教養部 数学講座 [復習]?.確率変数と確率分布の定義(1) 1-確率変数の定義 [定義] 標本空間Ω上の実数値関数 (各根元事象に実数を対応させたもの)を確率変数random variable という. とり得る値が離散的→離散型確率変数 とり得る値が連続的→連続型確率変数 [復習]?.確率変数と確率分布の定義(2) 教科書p.83例1 Ω:サイコロを振ったときの,目の出方で定まる事象全体の集合. ・「サイコロを振って1の目が出る」は事象. ・「サイコロを振ってi の目が出る」という事象ωi に整数i を対応させる関数をX(=X(ωi))とおく と,Xは(離散型)確率変数となる. ・確率変数Xに対し, *「X=1」「X≦4」 *「Xは偶数」 などは事象. http://rio2016.5ch.net/test/read.cgi/math/1736907570/204
205: 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2025/06/14(土) 08:56:59.96 ID:036MevG8 >>204 補足の補足 徳永 伸一氏のまとまったサイトが見つからない なので、代用として 下記を提供します google検索:統計(医療統計)前期 第 回 site:https://www.tmd.ac.jp/artsci/math/lec/tokunaga/ (注:これで 数十のヒットがあります。必要な人は ここから手で探すか、あるいは必要キーワードのみで 別の人の資料を検索するかして) (抜粋) 統計? 第1回 序説〜確率 - 東京医科歯科大学 tmd.ac.jp https://www.tmd.ac.jp › tokunaga › statistics09_02 PDF ?.順列と組合せ. ?.確率の基礎概念. ?.確率の定義と性質. ?.条件付き確率と事象の独立性. ?.ベイズの定理. € 大部分は高校数学(受験数学)の範囲です. 34 ページ 統計(医療統計) - 東京医科歯科大学 tmd.ac.jp http://www.tmd.ac.jp › math › lec › tokunaga PDF Ωの事象Aに実数P(A)が対応し,以下の3条. 件(=確率の公理)を満たすとき,PをΩ上の. 確率という. (1)0≦P(A)≦1. (2) P(Ω)=1,P(φ)=0. (3)A,Bが互いに排反事象であるとき. 19 ページ 統計(医療統計) - 東京医科歯科大学 tmd.ac.jp https://www.tmd.ac.jp › math › lec › tokunaga PDF 前期・第4回 確率変数と確率分布(2). 授業担当 徳永伸. 授業担当:徳永伸一. 東京医科歯科大学教養部 数学講座. もういちど Overview. ▫ 確率(9章:6ページ)・・・第1回授業. http://rio2016.5ch.net/test/read.cgi/math/1736907570/205
206: 132人目の素数さん [] 2025/06/14(土) 09:05:31.32 ID:pmXx3B9i >>204-205 おまえ>>200-201が読めないの?自閉症くん 病院行けよ http://rio2016.5ch.net/test/read.cgi/math/1736907570/206
238: 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2025/06/15(日) 09:59:45.64 ID:lv2xCBEK >>204 つづき (引用開始) ”確率変数の定義 [定義] 標本空間Ω上の実数値関数 (各根元事象に実数を対応させたもの)を確率変数random variable という” (引用終り) さて、”確率変数の定義”は、上記の通りで その本性は 関数であって ”変数”に 引き摺られて 1試行でコロコロ変わるなどの妄想は、ダメですよw さらに、確率の用語を確認し整備しょう 試行:サイコロを投げる、コインを投げるといった実験のことを試行と呼びます 事象:試行をして観測された結果のことは事象と呼びます 全事象(標本空間):事象が対応する部分集合が全体集合の場合、その事象を全事象(標本空間)という 根元事象:事象が対応する部分集合が集合の一つの要素の場合、その事象を根元事象と言います (参考) https://wakara.co.jp/mathlog/20230419 wakara.co やさしく学ぶ統計学〜試行と事象とは?〜 2023年4月19日 1. 試行、事象とは? 確率を考える際、サイコロを投げる、コインを投げるといった実験のことを試行と呼びます。 また、試行をして観測された結果のことは事象と呼びます。 これらの言葉はやや紛らわしいですが、例えばサイコロ投げの場合は、サイコロを投げるという実験そのものが試行であり、「1の目が出た」などの結果が事象となります。 https://www.hmathmaster.com/matha/%E9%9B%86%E5%90%88%E3%81%AB%E3%82%88%E3%82%8B%E5%A0%B4%E5%90%88%E3%81%AE%E6%95%B0%E3%81%A8%E7%A2%BA%E7%8E%87%E3%81%AE%E8%80%83%E3%81%88%E6%96%B9/ 数学A > 場合の数と確率 > 集合による場合の数と確率の考え方 著者:L&M個別オンライン教室 瀬端隼也 修正日:2021年4月13日 事象 事象が対応する部分集合が全体集合の場合、その事象を全事象といい、事象が対応する部分集合が空集合の場合、その事象を空事象といい、事象が対応する部分集合が集合の一つの要素の場合、その事象を根元事象と言います。 そうすると、場合の数における全体の事柄が全事象と対応し、事柄が事象に対応し、一つ一つの場合が根元事象に対応するという、対応関係があります。 https://ja.wikipedia.org/wiki/%E6%A8%99%E6%9C%AC%E7%A9%BA%E9%96%93 標本空間 確率論にて、試行結果全体の集合のことである[4] 標本空間はふつう Ω で表す。全事象という意味では U(Universe の頭文字)で表すことも多い 測度論により、標本空間の部分集合で確率をもつものには可測であることが必要になる。標本空間の部分集合のうち確率をもつものを事象、事象空間をふつう F⊂2^Ω で表す。 F は Ω の完全加法族である。 これ以上分解できない事象を根元事象または単純事象 (elementary event / simple event) という。注意したいのは、根元事象は標本空間の1点を表す集合であり、元ではない。1点を表す集合か元であるかはそれぞれ「根元事象」「標本点」で区別される(例えば、サイコロを振ったとき、根元事象は {1}, …, {6}) http://rio2016.5ch.net/test/read.cgi/math/1736907570/238
メモ帳
(0/65535文字)
上
下
前次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.023s