スレタイ 箱入り無数目を語る部屋29(あほ二人の”アナグマの姿焼き"Part3w) (290レス)
前次1-
抽出解除 必死チェッカー(本家) (べ) 自ID レス栞 あぼーん

リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
20
(1): 132人目の素数さん [] 01/15(水)11:40 ID:kITRkOLu(1/3)
>>1-2
箱入り無数目論法

自然数100個の組(n1,…,n100)から(N1,…,N100)への写像
Ni=max(ni以外の99個の自然数)

このときN1,…,N100のうち99個は
N=max(n1,…,n100)と等しいから
ni<=Ni=Nとなる

ni>Niとなるのは
ni=Nで、ni以外のnjがnj<Nの場合だけ

100列から1列選ぶだけだから
100個の決定番号から1個選ぶだけ

ni>Niでなければ、決定番号の性質から
元の数列と代表列のNi番目の項が一致する

1.100列の決定番号の中で最大値をもつ列が2列以上の場合、必ず当たる
2.100列の決定番号の中で最大値をもつ列が1列のみの場合、確率99/100で当たる

問題の100列は固定されているのだから、場合分けだけすればよく
それぞれの場合の「確率」など考える必要は全くない

2の「さらに」以降、および >>3-19 は読まなくていい 見当違いだから(バッサリ)
21: 132人目の素数さん [] 01/15(水)11:47 ID:kITRkOLu(2/3)
>>2
「R^N/〜 の代表系を選んだ箇所で選択公理を使っている.
 その結果R^N →R^N/〜 の切断は非可測になる.
 ここは有名なヴィタリのルベーグ非可測集合の例(Q/Zを「差が有理数」で類別した代表系, 1905年)にそっくりである.
 逆に非可測な集合をこさえるには選択公理が要る(ソロヴェイ, 1970年)から,
 この戦略はふしぎどころか標準的とさえいえるかもしれない.
 しかし,選択公理や非可測集合を経由したからお手つき, と片付けるのは,面白くないように思う.
 現代数学の形式内では確率は測度論によって解釈されるゆえ,測度論は確率の基礎, と数学者は信じがちだ.
 だが,測度論的解釈がカノニカル, という証拠はないのだし,そもそも形式すなわち基礎, というのも早計だろう.
 確率は数学を越えて広がる生き物なのである(数学に飼いならされた部分が最も御しやすいけれど).」

2行目以降は無意味
そもそもR^N上の確率測度なんて全く考えてないから
22: 132人目の素数さん [] 01/15(水)11:48 ID:kITRkOLu(3/3)
>>3
「もうちょっと面白いのは,独立性に関する反省だと思う.
 確率の中心的対象は,独立な確率変数の無限族X1,X2,X3,…である.
 いったい無限を扱うには,
 (1)無限を直接扱う,
 (2)有限の極限として間接に扱う,
 二つの方針が可能である.
 確率変数の無限族は,任意の有限部分族が独立のとき,独立,と定義されるから,(2)の扱いだ.
 (独立とは限らない状況におけるコルモゴロフの拡張定理なども有限性を介する.)
 しかし,素朴に,無限族を直接扱えないのか?
 扱えるとすると私たちの戦略は頓挫してしまう.
 n番目の箱にXnのランダムな値を入れられて,ある箱の中身を当てようとしたって,
 その箱のX と他のX1,X2,X3,・・・がまるまる無限族として独立なら,
 当てられっこないではないか−−他の箱から情報は一切もらえないのだから.
 勝つ戦略なんかある筈ない,と感じた私たちの直観は,無意識に(1)に根ざしていた,といえる.
 ふしぎな戦略は,確率変数の無限族の独立性の微妙さをものがたる, といってもよい.」

全部、無意味
そもそも箱は確率変数ではない
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.016s